
Logix 5000 Controllers Add-On
Instructions
1756 ControlLogix, 1756 GuardLogix, 1769 CompactLogix, 1769
Compact GuardLogix, 1789 SoftLogix, 5069 CompactLogix, Emulate
5570

Programming Manual Original Instructions

Important User Information
Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure,
operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and
standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in
accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation,
Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or

death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help

you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT: Identifies information that is critical for successful application and understanding of the product.

These labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe

injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment

(PPE).

The following icon may appear in the text of this document.

Tip: Identifies information that is useful and can help to make a process easier to do or easier to understand.

Rockwell Automation recognizes that some of the terms that are currently used in our industry and in this publication are not in alignment with the movement toward inclusive
language in technology. We are proactively collaborating with industry peers to find alternatives to such terms and making changes to our products and content. Please excuse the
use of such terms in our content while we implement these changes.

2 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Summary of changes
This manual includes new and updated information. Use these reference tables to locate changed information.

Grammatical and editorial style changes are not included in this summary.

Global changes

None in this release.

New or enhanced features

This table contains a list of topics changed in this version, the reason for the change, and a link to the topic that contains the changed information.

Change Topic
Added notation to Safety instruction signature topic. Safety instruction signature on page 19

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 3

4 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Contents

Designing Add-On Instructions... 11

Introduction...11

About Add-On Instructions... 11

Components of an Add-On Instruction... 12

General information... 12

Parameters.. 13

Local tags.. 13

Data Type... 13

Logic routine... 14

Optional Scan Modes routines... 15

Instruction signature... 15

Signature history.. 16

Change History..16

Help..17

Considerations for Add-On Instructions... 17

Instruction functionality.. 17

Encapsulation.. 17

Safety Add-On Instructions...18

Instruction signature... 18

Safety instruction signature...19

Programming languages... 19

Transitional instructions... 19

Instruction size.. 20

Runtime editing..20

Nesting Add-On Instructions... 20

Routines versus Add-On Instructions... 21

Programmatic access to data...22

Unavailable instructions within Add-On Instructions..22

Use GSV and SSV instructions.. 23

Considerations when creating parameters...25

Passing arguments to parameters by reference or by value... 25

Selecting a data type for a parameter... 25

Creating an alias parameter for a local tag.. 25

Using a single dimension array as an InOut parameter.. 26

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 5

Determining which parameters to make visible or required..26

Using standard and safety tags... 28

Data access control.. 28

Planning your Add-On Instruction design..29

Intended behavior..29

Parameters..29

Naming conventions..29

Source protection..30

Nesting - reuse instructions... 30

Local tags..30

Programming languages.. 30

Scan mode routines..30

Test...30

Help documentation..30

Defining Add-On Instructions.. 33

Create an Add-On Instruction.. 33

Create a parameter... 33

Create a module reference parameter.. 35

Create local tags.. 37

Editing parameters and local tags... 38

Updates to arguments following parameter edits...38

Copy parameter or local tag default values... 39

Creating logic for the Add-On instruction..41

Execution considerations for Add-On Instructions... 42

Optimizing performance...42

Defining operation in different scan modes.. 43

Enabling scan modes.. 44

Create a prescan routine...44

Create a postscan routine... 45

Create an EnableInFalse routine...47

Using the EnableIn and EnableOut parameters... 48

EnableIn parameter and ladder diagrams..48

EnableIn parameter and function blocks... 49

EnableIn parameter and structured text.. 49

Change the class of an Add-On Instruction..49

Testing the Add-On Instruction... 50

6 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Prepare to test an Add-On Instruction..50

Test the flow...50

Monitor logic with data context views..50

Verifying individual scan modes... 51

Source protection for an Add-On Instruction...52

Enable the source protection feature... 53

Generating an Add-On Instruction signature.. 53

Generate, remove, or copy an instruction signature..53

Create a signature history entry.. 54

Generate a Safety Instruction Signature.. 54

View and print the instruction signature... 55

Create an alarm definition... 56

Access attributes from Add-On Instruction alarm sets..57

Creating instruction help..59

Write clear descriptions... 59

Document an Add-On Instruction...60

Project documentation.. 61

Motor starter instruction example..62

Simulation instruction example...66

Ladder diagram configuration.. 67

Function block diagram configuration.. 68

Structured text configuration... 68

Using Add-On Instructions...69

Introduction... 69

Access Add-On Instructions... 69

Use the Add Ladder Element dialog box... 69

Including an Add-On Instruction in a routine..71

Track an Add-On Instruction..72

Reference a hardware module.. 73

Tips for using an Add-On Instruction...75

Programmatically access a parameter.. 76

Using the Jog command in ladder diagram...76

Use the Jog command in a function block diagram.. 77

Using the Jog command in structured text...78

Monitor the value of a parameter...78

View logic and monitor with data context..79

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 7

Determine if the Add-On Instruction is source protected.. 81

Copy an Add-On Instruction... 82

Store Add-On Instructions.. 82

Importing and Exporting Add-On Instructions..85

Create an export file... 85

Export to separate files... 86

Export to a single file... 87

Importing an Add-On Instruction.. 87

Import considerations...87

Import configuration...89

Update an Add-On Instruction to a newer revision through import.. 90

8 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

d788e13641
d788e13641
d788e13641
d788e13641

Preface
This manual shows how to use Add-On Instructions, which are custom instructions that you design and create, for the Logix Designer application.

If you design, program, or troubleshoot safety applications that use GuardLogix controllers, refer to the GuardLogix Safety Application Instruction Set Safety Reference Manual,
publication 1756-RM095.

This manual is one of a set of related manuals that show common procedures for programming and operating Logix 5000 controllers.

For a complete list of common procedures manuals, refer to the Logix 5000 Controllers Common Procedures Programming Manual, publication 1756-PM001.

The term Logix 5000 controller refers to any controller based on the Logix 5000 operating system. Rockwell Automation recognizes that some of the terms that are currently used
in our industry and in this publication are not in alignment with the movement toward inclusive language in technology. We are proactively collaborating with industry peers to find
alternatives to such terms and making changes to our products and content. Please excuse the use of such terms in our content while we implement these changes.

Studio 5000 environment

The Studio 5000 Automation Engineering & Design Environment® combines engineering and design elements into a common environment. The first element is the Studio 5000
Logix Designer® application. The Logix Designer application is the rebranding of RSLogix 5000® software and will continue to be the product to program Logix 5000™ controllers for
discrete, process, batch, motion, safety, and drive-based solutions.

The Studio 5000® environment is the foundation for the future of Rockwell Automation® engineering design tools and capabilities. The Studio 5000 environment is the one place for
design engineers to develop all elements of their control system.

Additional resources
These documents contain additional information concerning related Rockwell Automation products.

Resource Description
Industrial Automation Wiring and Grounding Guidelines, publication, 1770-4.1 Provides general guidelines for installing a Rockwell Automation industrial system.
Rockwell Automation product certifications Provides declarations of conformity, certificates, and other certification details.

View or download publications at https://www.rockwellautomation.com/en-us/support/documentation/literature-library.html. To order paper copies of technical documentation,
contact a local Rockwell Automation distributor or sales representative.

Understanding terminology
This table defines some of the terms used in this manual when describing how parameters and arguments are used in Add-On Instructions.

Term Definition

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 9

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm095_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm095_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/in/1770-in041_-en-p.pdf%5Cn
https://www.rockwellautomation.com/en-us/support/documentation/product-certifications.html
https://www.rockwellautomation.com/en-us/support/documentation/literature-library.html

Argument An argument is assigned to a parameter of an Add-On Instruction instance. An argument contains
the specification of the data used by an instruction in a user program. An argument can contain the
following:
• A simple tag (for example, L101)

• A literal value (for example, 5)

• A tag structure reference (for example, Recipe.Temperature)

• A direct array reference (for example, Buffer[1])

• An indirect array reference (for example, Buffer[Index+1])

• A combination (for example, Buffer[Index+1].Delay)

Parameter Parameters are created in the Add-On Instruction definition. When an Add-On Instruction is used
in application code, arguments must be assigned to each required parameter of the Add-On
Instruction.

InOut parameter An InOut parameter defines data that can be used as both input and output data during the
execution of the instruction. Because InOut parameters are always passed by reference, their values
can change from external sources during the execution of the Add-On Instruction.

Input parameter For an Add-On Instruction, an Input parameter defines the data that is passed by value into the
executing instruction. Because Input parameters are always passed by value, their values cannot
change from external sources during the execution of the Add-On Instruction.

Output parameter For an Add-On Instruction, an Output parameter defines the data that is produced as a direct result
of executing the instruction. Because Output parameters are always passed by value, their values
cannot change from external sources during the execution of the Add-On Instruction.

Passed by reference When an argument is passed to a parameter by reference, the logic directly reads or writes the
value that the tag uses in controller memory. Because the Add-On Instruction is acting on the same
tag memory as the argument, other code or HMI interaction that changes the argument’s value can
change the value while the Add-On Instruction is executing.

Passed by value When an argument is passed to a parameter by value, the value is copied in or out of the parameter
when the Add-On Instruction executes. The value of the argument does not change from external
code or HMI interaction outside of the Add-On Instruction itself.

Module reference parameter A module reference parameter is an InOut parameter of the MODULE data type that points to the
Module Object of a hardware module. You can use module reference parameters in both Add-on
Instruction logic and program logic. Since the module reference parameter is passed by reference, it
can access and modify attributes in a hardware module from an Add-On Instruction.

Legal notices

Rockwell Automation publishes legal notices, such as privacy policies, license agreements, trademark disclosures, and other terms and conditions on the Legal Notices page of
the Rockwell Automation website.

Software and Cloud Services Agreement

Review the Rockwell Automation Software and Cloud Services Agreement here.

Open Source Software Licenses

The software included in this product contains copyrighted software that is licensed under one or more open source licenses.

You can view a full list of all open source software used in this product and their corresponding licenses at this URL:

Studio 5000 Logix Designer Open Source Attribution List

You may obtain Corresponding Source code for open source packages included in this product from their respective project web site(s). Alternatively, you may obtain complete
Corresponding Source code by contacting Rockwell Automation via the Contact form on the Rockwell Automation website: http://www.rockwellautomation.com/global/about-
us/contact/contact.page. Please include "Open Source" as part of the request text.

10 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

https://www.rockwellautomation.com/global/legal-notices/overview.page
https://www.rockwellautomation.com/en-us/company/about-us/legal-notices/software-cloud-services-agreement.html
https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/1152164
http://www.rockwellautomation.com/global/about-us/contact/contact.page
http://www.rockwellautomation.com/global/about-us/contact/contact.page

Chapter 1

Designing Add-On Instructions

Introduction
Add-On Instructions are used in your routines like any built-in instructions. You add calls to your instruction and then

define the arguments for any parameters.

About Add-On Instructions
With Add-On Instructions, you can create new instructions for sets of commonly-used logic, provide a common

interface to this logic, and provide documentation for the instruction.

Add-On Instructions are intended to be used to encapsulate commonly used functions or device control. They are not

intended to be a high-level hierarchical design tool. Programs with routines are better suited to contain code for the

area or unit levels of your application. The following table lists the benefits of using Add-On Instructions.

Reuse Code • You can use Add-On Instructions to promote consistency

between projects by reusing commonly-used control

algorithms.

• If you have an algorithm that will be used multiple times

in the same project or across multiple projects, it may

make sense to incorporate that code inside an Add-On

Instruction to make it modular and easier to reuse.

Provide an easier to understand interface • You can place complicated algorithms inside of an Add-On

Instruction, and then provide an easier to understand

interface by making only essential parameters visible or

required.

• You can reduce documentation development time through

automatically generating instruction help.

Export and import an Add-On Instruction • You can export an Add-On Instruction to an .L5X file that

can then be imported into another project. You can also

copy and paste between projects.

Simplify maintenance • You can simplify code maintenance because Add-On

Instruction logic, monitored in the Logix Designer

application, animates with tag values relative to that

specific instance of the Add-On Instruction.

Track revisions, view change history, and confirm instruction

functionality

• You can add an instruction signature to your Add-On

Instruction, which generates a unique identifier and

prevents the instruction from being edited without

resulting in a change to the signature.

Use Add-On-Instructions across multiple projects. You can define the instructions, the instructions can be provided to

you by someone else, or they can be copied from another project.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 11

Chapter 1 Designing Add-On Instructions

Once defined in a project, they behave similarly to the built-in instructions already available in the Logix Designer

application. They appear on the instruction toolbar and in the instruction browser for easy access, just like built-in

Logix Designer application instructions.

Like standard Add-On Instructions, safety Add-On Instructions let you encapsulate commonly-used safety logic into

a single instruction, making it modular and easier to reuse. In addition to the instruction signature used for high-

integrity Add-On Instructions, safety Add-On Instructions feature a SIL 3 safety instruction signature for use in safety-

related functions up to and including SIL 3.

Refer to the safety reference manual for your controller, listed in the Additional resources on page , for details on

certifying safety Add-On Instructions and using them in SIL 3 safety applications.

Components of an Add-On Instruction
Add-On Instructions are made up of the following parts.

General information
The General tab contains the information you enter when you first create the instruction. You can use this tab to

update that information. The description, revision, revision note, and vendor information is copied into the custom

help for the instruction. The revision is not automatically managed by the software. You are responsible for defining

how it is used and when it is updated.

12 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

unique_12
unique_12

Chapter 1 Designing Add-On Instructions

Class information for safety controller projects appears on the General tab as well. The class can be standard or

safety. Safety Add-On Instructions must meet requirements specific to safety applications. See Safety Add-On

Instructions on page 18 for more information.

Parameters
• What data needs to be passed to the instruction?

• What information needs to be accessible outside of the instruction?

• Do alias parameters need to be defined for data from local tags that needs to be accessible from outside the

Add-On Instruction?

• How does the parameters display? The order of the parameters defines the appearance of instruction.

• Which parameters should be required or visible?

Local tags
• What data is needed for your logic to execute but is not public?

• Identify local tags you might use in your instruction. Local tags are useful for items such as intermediate

calculation values that you do not want to expose to users of your instruction.

• Do you want to create an alias parameter to provide outside access to a local tag?

Data Type
Parameters and local tags are used to define the Data Type that is used when executing the instruction. The

software builds the associated Data Type. The software orders the members of the Data Type that correspond to the

parameters in the order that the parameters are defined. Local tags are added as hidden members.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 13

Chapter 1 Designing Add-On Instructions

The Data Type for a Local Tag may not be:

• A multi-dimensional array or an object type, which includes all Motion types, MSG, ALARM_ANALOG, and

ALARM_DIGITAL.

• A data type used only for InOut parameters (MODULE).

The Data Type field is unavailable for members of a Local Tag.

Logic routine
The logic routine of the Add-On Instruction defines the primary functionality of the instruction. It is the code that

executes whenever the instruction is called. The following image is the interface of an Add-On Instruction and its

primary logic routine that defines what the instruction does.

14 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 1 Designing Add-On Instructions

Optional Scan Modes routines
You can define additional routines for scan mode behavior.

Instruction signature
The instruction signature, available for both standard and safety controllers, lets you quickly determine if the Add-On

Instruction has been modified. Each Add-On Instruction has its own instruction signature on the Add-On Instruction

definition. The instruction signature is required when an Add-On Instruction is used in SIL 3 safety-related functions,

and may be required for regulated industries. Use it when your application calls for a higher level of integrity.

Once generated, the instruction signature seals the Add-On Instruction, preventing it from being edited until the

signature is removed. This includes rung comments, tag descriptions, and any instruction documentation that was

created. When an instruction is sealed, you can perform only these actions:

• Copy the instruction signature

• Create or copy a signature history entry

• Create instances of the Add-On Instruction

• Download the instruction

• Remove the instruction signature

• Print reports

The instruction signature does not prevent referenced Add-On Instructions or User-defined Data Types from being

modified. Changes to the parameters of a referenced Add-On Instruction or to the members of a referenced User-

defined Data Type can cause the instruction signature to become invalid. These changes include:

• Adding, deleting, or moving parameters, local tags, or members in referenced User-defined Data Types.

• Changing the name, data type, or display style of parameters, local tags, or members in referenced User-

defined Data Types.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 15

Chapter 1 Designing Add-On Instructions

If you want to enable project documentation or source protection on an Add-On Instruction to be sealed with an

instruction signature, you need to import the translated information or apply source protection before generating the

signature. You must have the source key to generate a signature or to create a signature history entry for a source-

protected Add-On Instruction that has an instruction signature.

See Defining Source Protection for an Add-On Instruction on page 52 for more information on source protecting

your Add-On Instruction.

Tip:

The instruction signature is not guaranteed to be maintained when migrating between major revisions of

RSLogix5000 or <Product_Name_RSL5K>.

Signature history
The Signature history provides a record of signatures for future reference. A signature history entry consists of the

name of the user, the instruction signature, the timestamp value, and a user-defined description. Up to six history

entries can be stored. If a seventh entry is made, the oldest entry is automatically deleted.

Change History
The Change History tab displays the creation and latest edit information that is tracked by the software. The By

fields show who made the change based on the Windows user name at the time of the change.

16 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 1 Designing Add-On Instructions

Help
The name, revision, description, and parameter definitions are used to automatically build the Instruction Help. Use

the Extended Description Text to provide additional Help documentation for the Add-On Instruction. This content

reflects updates as Parameters or other attributes are changed in the definition.

The Instruction Help Preview shows how your instruction will appear in the various languages, based on parameters

defined as required or visible.

Considerations for Add-On Instructions
When deciding whether to develop an Add-On Instruction, consider the following aspects.

Instruction functionality
Complex instructions tend to be highly application specific and not reusable, or require extensive configuration

support code. As with the built-in instructions, Add-On Instructions need to do one thing, do it well, and support

modular coding. Consider how the instruction will be used and manage interface complexity for the end user or

application.

Add-On Instructions are best at providing a specific type of functionality or device control.

Encapsulation
Add-On Instructions are designed to fully encapsulate the code and data associated with the instruction. The logic

inside an Add-On Instruction uses only the parameters and local tags defined by the instruction definition. There is

no direct programmatic access to controller or program scope tags. This lets the Add-On Instruction be a standalone

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 17

Chapter 1 Designing Add-On Instructions

component that can execute in any application that calls it by using the parameters interface. It can be validated

once and then locked to prevent edits.

Safety Add-On Instructions
Safety Add-On Instructions are used in the safety task of GuardLogix safety controllers. Create a safety Add-On

Instruction if you need to use your instruction in a safety application. Safety Add-On Instructions are subject to a

number of restrictions. These restrictions, enforced by Logix Designer application and all GuardLogix controllers, are

listed here for informational purposes only.

• They may use only safety-approved instructions and data types.

• All parameters and local tags used in a safety Add-On Instruction must also be safety class.

• Safety Add-On Instructions use ladder diagram logic only and can be called in safety routines only, which are

currently restricted to ladder logic.

• Safety Add-On Instructions may be referenced by other safety Add-On Instructions, but not by standard Add-

On Instructions.

• Safety Add-On instructions cannot be created, edited, or imported when a safety project is safety-locked or

has a safety task signature.

Refer to the the safety reference manual for your controller, listed in the Additional resources on page , for

information on how to certify a safety Add-On Instruction as well as details on requirements for safety applications,

the safety task signature, and a list of approved instructions and data types.

Instruction signature
The instruction signature, available for both standard and safety controllers, lets you quickly determine if the Add-On

Instruction has been modified. Each Add-On Instruction has its own instruction signature on the Add-On Instruction

definition. The instruction signature is required when an Add-On Instruction is used in SIL 3 safety-related functions,

and may be required for regulated industries. Use it when your application calls for a higher level of integrity.

Once generated, the instruction signature seals the Add-On Instruction, preventing it from being edited until the

signature is removed. This includes rung comments, tag descriptions, and any instruction documentation that was

created. When an instruction is sealed, you can perform only these actions:

• Copy the instruction signature

• Create or copy a signature history entry

• Create instances of the Add-On Instruction

• Download the instruction

• Remove the instruction signature

• Print reports

The instruction signature does not prevent referenced Add-On Instructions or User-defined Data Types from being

modified. Changes to the parameters of a referenced Add-On Instruction or to the members of a referenced User-

defined Data Type can cause the instruction signature to become invalid. These changes include:

• Adding, deleting, or moving parameters, local tags, or members in referenced User-defined Data Types.

• Changing the name, data type, or display style of parameters, local tags, or members in referenced User-

defined Data Types.

18 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

unique_12
unique_12

Chapter 1 Designing Add-On Instructions

If you want to enable project documentation or source protection on an Add-On Instruction to be sealed with an

instruction signature, you need to import the translated information or apply source protection before generating the

signature. You must have the source key to generate a signature or to create a signature history entry for a source-

protected Add-On Instruction that has an instruction signature.

See Defining Source Protection for an Add-On Instruction on page 52 for more information on source protecting

your Add-On Instruction.

Tip:

The instruction signature is not guaranteed to be maintained when migrating between major revisions of

RSLogix5000 or <Product_Name_RSL5K>.

Safety instruction signature
When a sealed safety Add-On Instruction is downloaded for the first time, a SIL 3 Safety Instruction Signature is

automatically generated.

The Safety Instruction Signature is a number that identifies the execution characteristics of the safety Add-On

Instruction (AOI). The Safety Instruction Signature is different than the ID, which consists of a number and time stamp

which helps determine if the instruction has been modified.

The Safety Instruction Signature takes into account a variety of factors that affect execution characteristics of the

Safety Instruction, such as firmware and software version, and technology considerations such as compilers and

hardware platform. Therefore, the Safety Instruction Signature is not guaranteed to be maintained when migrating

between major revisions of Logix Designer.

Tip: The Safety Instruction Signature is computed by the controller and may change upon download.

For details on how to certify a safety Add-On Instruction, refer to the safety reference manual for your controller,

listed in the Additional resources on page .

Programming languages
• What language do you want to use to program your instruction?

The primary logic of your instruction will consist of a single routine of code. Determine which software

programming language to use based on the use and type of application. Safety Add-On Instructions are

restricted to Ladder Diagram.

• If execution time and memory usage are critical factors, refer to the Logix5000 Controllers Execution Time

and Memory Use Reference Manual, publication 1756-RM087.

Transitional instructions
Some instructions execute (or retrigger) only when rung-condition-in toggles from false to true. These are

transitional-ladder diagram instructions. When used in an Add-On Instruction, these instructions will not detect the

rung-in transition to the false state. When the EnableIn bit is false, the Add-On Instruction logic routine no longer

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 19

unique_12
unique_12
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm087_-en-p.pdf

Chapter 1 Designing Add-On Instructions

executes, thus the transitional instruction does not detect the transition to the false state. Extra conditional logic is

required to handle triggering of transitional instructions contained in an Add-On Instruction.

Some examples of transitional instructions include: ONS, MSG, PXRQ, SRT, some of the ASCII instructions, and some of

the Motion instructions.

Tip: The EnableInFalse routine can be used to provide the conditioning required to retrigger transitional

instructions contained in an Add-On Instruction. However, this method will not work for calls to this Add-

On Instruction contained in a Structured Text routine, since EnableIn is always true for calls in Structured

Text.

Instruction size
Add-On Instructions have one primary logic routine that defines the behavior of the instruction when executed. This

logic routine is like any other routine in the project and has no additional restrictions in length. The total number of

Input parameters plus Output parameters plus local tags can be up to 512.

Logix Designer versions 27 and earlier do not set a limit on the number of InOut parameters. However, limit extended

properties (.@Min and .@Max syntax) should not be defined on an InOut parameter of an Add-On Instruction and

should not be used in Add-On Instruction definition logic or the logic does not verify.

Logix Designer version 28 limits the number of InOut parameters for Add-On Instructions to 40.

Logix Designer versions 29 and later limit the number of InOut parameters for Add-On Instructions to 64 and limit the

Add-On Instruction nesting levels to 16. Rockwell recommends limiting the level of nesting to eight levels to reduce

complexity and make the instruction easier to manage.

Limits cannot be accessed inside Add-On Instruction logic.

The maximum data instance supported (which includes Inputs, Outputs, and local tags) is two megabytes. The data

type size is displayed on the bottom of the Parameters and Local Tags tab in the Add-On Instruction Definition.

Runtime editing
Add-On Instructions can only be edited oWine. If the intended functionality needs to be changed in a running

controller, consider carefully if an Add-On Instruction is suitable.

Nesting Add-On Instructions
Add-On Instructions can call other Add-On Instructions in their routines. This provides the ability to design more

modular code by creating simpler instructions that can be used to build more complex functionality by nesting

instructions. The instructions can be nested up to 16 levels deep. However, Rockwell recommends limiting the level of

nesting to eight levels to reduce complexity and make the instruction easier to manage.

20 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 1 Designing Add-On Instructions

Add-On Instructions cannot call other routines through a JSR instruction. You must use nested instructions if you

need complex functionality consisting of multiple routines.

Tip: To nest Add-On Instructions, both the nested instruction and the instruction that calls it must be

of the same class type or the calling instruction will not verify. That is, standard Add-On Instructions

may call only standard Add-On Instructions and safety Add-On Instructions may call only safety Add-On

Instructions.

Routines versus Add-On Instructions
You can write your code in three basic ways: to run in-line as a main routine, to use subroutine calls, or as Add-On

Instructions. The following table summarizes the advantages and disadvantages of each.

Aspect Main Routine Subroutine Add-On Instruction

Accessibility N/A Within program (multiple

copies, one for each program)

Anywhere in controller (single

copy for the entire project)

Parameters N/A Pass by value Pass by value with Input and

Output parameters

Numeric parameters N/A No conversion, user must

manage

Automatic data type

conversion for Input and

Output parameters

Parameters data types N/A Atomic, arrays, structures Atomic for any parameter

Arrays and structures must be

InOut parameters

Parameter checking N/A None, user must manage Verification checks that

correct type of argument has

been provided for a parameter

Data encapsulation N/A All data at program or

controller scope (accessible to

anything)

Local data is isolated (only

accessible within instruction)

Monitor/debug In-line code with its data Mixed data from multiple calls,

which complicates debugging

Single calling instance data,

which simplifies debugging

Supported programming

languages

FBD, LD, SFC, ST FBD, LD, SFC, ST FBD, LD, ST

Callable from N/A FBD, LD, SFC, ST FBD, LD, SFC through ST, ST

Protection Locked and view only Locked and view only Locked and view only

Documentation Routine, rung, textbox, line Routine, rung, textbox, line Instruction, revision

information, vendor, rung,

textbox, line, extended help

Execution performance Fastest JSR/SBR/RTN instructions add

overhead

All data is copied

Call is more efficient

InOut parameters are passed

by reference, which is faster

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 21

Chapter 1 Designing Add-On Instructions

Indexed reference impact than copying data for many

types

Parameter references are

automatically offset from

passed-in instruction tag

location

Memory use Most used Very compact Compact call requires more

memory than a subroutine call

All references need an

additional word

Edit Online/offline Online/offline Offline only

Import/export Entire routine, including tags

and instruction definitions to

L5X

Entire routine, including tags

and instruction definitions to

L5X

Full instruction definition

including routines and tags to

L5X

Instruction signature N/A N/A 32-bit signature value seals

the instruction to prevent

modification and provide high

integrity

Programmatic access to data
Input and Output parameters and local tags are used to define an instruction-defined data type. Each parameter or

local tag has a member in the data type, although local tag members are hidden from external use. Each call to an

Add-On Instruction uses a tag of this data type to provide the data instance for the instruction's execution.

The parameters of an Add-On Instruction are directly accessible in the controller's programming through this

instruction-defined tag within the normal tag-scoping rules.

Local tags are not accessible programmatically through this tag. This has impact on the usage of the Add-On

Instruction. If a structured (including UDTs), array, or nested Add-On Instruction type is used as a local tag (not InOut

parameters), then they are not programmatically available outside the Add-On Instruction definition.

Tip: You can access a local tag through an alias parameter.

See Creating an alias parameter for a local tag on page 25.

Unavailable instructions within Add-On Instructions
Most built-in instructions can be used within Add-On Instructions. The following instructions cannot be used.

Unavailable Instruction Description

BRK Break

EOT End of Transition

22 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 1 Designing Add-On Instructions

EVENT Event Task Trigger

FOR For (For/Next Loop)

IOT Immediate Output

JSR Jump to Subroutine

JXR Jump to External Routine

MAOC Motion Arm Output Cam

PATT Attach to Equipment Phase

PCLF Equipment Phase Clear Failure

PCMD Equipment Phase Command

PDET Detach from Equipment Phase

POVR Equipment Phase Override Command

RET Return

SBR Subroutine

SFP SFC Pause

SFR SFC Reset

Safety application instructions, such as Safety Mat (SMAT), may be used in safety Add-On Instructions only. For

detailed information on safety application instructions, refer to the GuardLogix Safety Application Instruction Set

Safety Reference Manual, publication 1756-RM095.

In addition, the following instructions may be used in an Add-On Instruction, but the data instances must be passed

as InOut parameters.

• ALMA (Analog Alarm)

• ALMD (Digital Alarm)

• All Motion Instructions

• MSG (Message)

Use GSV and SSV instructions
When using GSV and SSV instructions inside an Add-On Instruction, the following classes are supported:

• AddOnInstructionDefinition

Tip: GSV-only. SSV instructions will not verify. Also, the classes that represent programming

components (Task, Program, Routine, AddOnInstructionDefinition) support only ’this’ as the

Instance Name.

• Axis

• Controller

• Controller Device

• CoordinateSystem

• CST

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 23

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm095_-en-p.pdf

Chapter 1 Designing Add-On Instructions

Tip: GSV-only. SSV instructions will not verify.

• DF1

• FaultLog

• HardwareStatus

Tip: GSV-only. SSV instructions will not verify.

• Message

• Module

• MotionGroup

• Program

Tip: The classes that represent programming components (Task, Program, Routine,

AddOnInstructionDefinition) support only ’this’ as the Instance Name.

• Redundancy

• Routine

• Safety

• Serial Port

• Task

• TimeSynchronize

• WallClockTime

When you enter a GSV or SSV instruction, Logix Designer application displays the object classes, object names, and

attribute names for each instruction. This table lists the attributes for the AddOnInstructionDefinition class.

Attribute Name Data Type Attribute Description

MajorRevision DINT Major revision number of the Add-On

Instruction

MinorRevision DINT Minor revision number of the Add-On

Instruction

Name String Name of the Add-On Instruction

RevisionExtendedText String Text describing the revision of the Add-On

Instruction

Vendor String Vendor that created the Add-On

Instruction

LastEditDate LINT Date and time stamp of the last edit to an

Add-On Instruction

SignatureID DINT 32-bit instruction signature value

SafetySignatureID DINT 32-bit safety instruction signature value

24 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 1 Designing Add-On Instructions

For more information on using GSV and SSV instructions, refer to the Logix Controllers Instructions Reference Manual,

publication 1756-RM009.

Considerations when creating parameters
Consider the following information when you are creating parameters.

Passing arguments to parameters by reference or by value
The following information will help you understand the differences between passing argument tags to parameters by

reference or by value.

Aspect By Value (Input or Output) By Reference (InOut)

Value Synchronous—the argument's value does

not change during Add-On Instruction

execution.

Asynchronous—the argument's value

may change during Add-On Instruction

execution. Any access by the instruction's

logic directly reads or writes the passed

tag's value.

Performance Argument values are copied in and out of

the parameters of the Add-On Instruction.

This takes more time to execute a call to

the instruction.

Parameters access argument tags

directly by reference, which leads to

faster execution of instruction calls.

Memory usage Most amount. Least amount.

Parameter data types supported Atomic (SINT, DINT, INT, REAL, BOOL). Atomic, arrays, and structures.

Selecting a data type for a parameter
The Logix5000 controllers perform DINT (32 bit) and REAL (32 bit) math operations, which causes DINT data types to

execute faster than other integer data types. Data conversion rules of SINT to INT to DINT are applied automatically,

and can add overhead. Whenever possible, use DINT data types for the Add-On Instruction Input and Output

parameters.

Creating an alias parameter for a local tag
Alias parameters simplify connecting local tags to an Input or Output tag that is commonly used in the Add-On

Instruction’s application without requiring that manual code be created to make the association. Aliases can be used

to define an Input or Output parameter with direct access to a local tag or its member. Changing the value of an alias

parameter changes the data of the local tag or local tag member it represents and vice versa.

Alias parameters are subject to these restrictions:

• Alias parameters must be either Input or Output parameters.

• You can only create an alias parameter for a local tag or its member.

• Only one Input and one Output parameter may be mapped to the same local tag or the same member of a

local tag.

• Only BOOL, SINT, INT, DINT, and REAL data types may be used.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 25

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm009_-en-d.pdf

Chapter 1 Designing Add-On Instructions

• Alias parameters may not be constants.

• The External Access type of an alias parameter matches the External Access type of the local tag to which it

is mapped.

For information on constants and External Access, see Data access control on page 28.

Using a single dimension array as an InOut parameter
The InOut parameter can be defined to be a single dimension array. When specifying the size of this array, consider

that the user of your array can either:

• Pass an array tag that is the same size as your definition.

• Pass an array tag that is larger than your definition.

When developing your logic, use the Size instruction to determine the actual size of the referenced array to

accommodate this flexibility.

Tip: When you monitor an array InOut parameter inside of the logic routine, the parameter definition is

used to determine the size of the array. For example, assume you have defined an InOut parameter to be

a 10-element array of DINTs and the end user passes in an array of 100 DINTs. Then if you open the Add-

On Instruction logic, select the appropriate context for that call, and monitor the array parameter, only 10

elements will be displayed.

Determining which parameters to make visible or required
To help be sure that specific data is passed into the Add-On Instruction, you can use required parameters. A required

parameter must be passed each argument for a call to the instruction to verify. In Ladder Diagram and Structured

Text, this is done by specifying an argument tag for these parameters. In a Function Block Diagram, required Input

and Output parameters must be wired, and InOut parameters must have an argument tag. If a required parameter

does not have an argument associated, as described above, then the routine containing the call to the Add-On

Instruction will not verify.

For Output parameters, making a parameter visible is useful if you do not usually need to pass the parameter value

out to an argument, but you do want to display its value prominently for troubleshooting.

Required parameters are always visible, and InOut parameters are always required and visible. All Input and Output

parameters, regardless of being marked as required or visible, can be programmatically accessed as a member of the

instruction's tag.

The following picture shows a Simulation instruction in the function block editor.

26 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 1 Designing Add-On Instructions

If you want a pin that is displayed in Function Block, but wiring to it is optional, set it as Visible.

The following picture shows a Simulation instruction in the ladder editor.

• If you want the parameter’s value displayed on the instruction face in Ladder, set the parameter as visible.

• An Output parameter of the BOOL tag type that is not required, but visible, will show as a status flag on the

right side of the block in Ladder. This can be used for status flags like DN or ER.

This table explains the effects of the Required and Visible parameter settings on the display of the instructions.

Parameter

Type

Is the

Parameter

Required?

Is the

Parameter

Visible?

Ladder

Diagram

Function

Block

Diagram

Structured

Text

Does the

Value

display?

Does the

Argument

display?

Do You

Need to

Connect the

Parameter?

Does the

Argument

display?

Can You

Change the

Visibility

Setting

Within the

Function

Block?

Does the

Argument

display?

Input Y Y Y Y Y N/A N Y

Input N Y Y N N N/A Y N

Input N N N N N N/A Y N

Output Y Y Y Y Y N/A Y Y

Output N Y Y N N N/A Y N

Output N N N N N N/A Y N

InOut Y Y N Y N/A Y N Y

If you have a parameter for which the user must specify a tag as its source for input or its destination as output, and

you do not want this to be optional, set the parameter as required. Any required parameters are automatically set to

visible.

The Visible setting is always set to visible for InOut parameters. All InOut parameters are required.

Tip: When you are using your Add-On Instructions, the Visible setting may be overridden in Function

Block Diagram routines if the parameter is not required or already wired. Overriding the visibility at the

instruction call does not affect this definition configuration.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 27

Chapter 1 Designing Add-On Instructions

Using standard and safety tags
When creating a safety Add-On Instruction, follow these guidelines for standard and safety tags:

• Standard tags may not be used as Input, Output, or InOut parameters of a safety Add-On Instruction.

• Safety tags may be used as Input parameters for standard Add-On Instructions.

Data access control
In the Logix Designer application, versions 18 and later, you can prevent programmatic modification of InOut

parameters by designating them as constants. You can also configure the type of access to allow external devices,

such as an HMI, to have to your tag and parameter data. You can control access to tag data changes with Logix

Designer application by configuring FactoryTalk security.

Constant values

InOut parameters may be designated as constant value tags to prevent their data from being modified by controller

logic. If the logic of an Add-On Instruction contains a write operation to a constant value parameter, the Add-On

Instruction does not verify in the Add-On Instruction definition context.

External Access

External Access defines the level of access that is allowed for external devices, such as an HMI, to see or change tag

values.

Add-On Instruction Parameters and Tags External Access Options

Local tag Read/Write

Input parameter Read Only

Output parameter None

EnableIn parameter Read Only

EnableOut parameter

InOut parameter N/A

28 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 1 Designing Add-On Instructions

Planning your Add-On Instruction design
Take time to plan your instruction design. Advance planning can identify issues that need to be addressed. When

defining the requirements of an instruction, you are also determining the interface. Keep the following aspects in

mind when defining your instruction requirements and creating your Add-On Instruction.

Intended behavior
• What is the purpose for creating the Add-On Instruction?

• What problem is it expected to solve?

• How is it intended to function?

• Do you need to higher level of integrity on your Add-On Instruction?

If so, you can generate an instruction signature as a means to verify that your Add-On Instruction has not

been modified.

• Do you need to use safety application instructions and certify your safety Add-On Instruction to SIL-3

integrity?

For details on how to certify a safety Add-On Instruction, refer to the safety reference manual for your

controller, listed in the Additional resources on page .

Parameters
• What data needs to be passed to the instruction?

• What information needs to be accessible outside of the instruction?

• Do alias parameters need to be defined for data from local tags that needs to be accessible from outside the

Add-On Instruction?

• How does the parameters display? The order of the parameters defines the appearance of instruction.

• Which parameters should be required or visible?

Naming conventions
The instruction name is to be used as the mnemonic for your instruction. Although the name can be up to 40

characters long, you typically want to use shorter, more manageable names.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 29

unique_12
unique_12

Chapter 1 Designing Add-On Instructions

Source protection
• What type of source protection needs to be defined, if any?

• Who has access to the source key?

• Will you need to manage source protection and an instruction signature?

Source protection can be used to provide read-only access of the Add-On Instruction or to completely lock or

hide the Add-On Instruction and local tags.

Source protection must be applied prior to generating an instruction signature.

Nesting - reuse instructions
• Are there other Add-On Instructions that you can reuse?

• Do you need to design your instructions to share common code?

Local tags
• What data is needed for your logic to execute but is not public?

• Identify local tags you might use in your instruction. Local tags are useful for items such as intermediate

calculation values that you do not want to expose to users of your instruction.

• Do you want to create an alias parameter to provide outside access to a local tag?

Programming languages
• What language do you want to use to program your instruction?

The primary logic of your instruction will consist of a single routine of code. Determine which software

programming language to use based on the use and type of application. Safety Add-On Instructions are

restricted to Ladder Diagram.

• If execution time and memory usage are critical factors, refer to the Logix5000 Controllers Execution Time

and Memory Use Reference Manual, publication 1756-RM087.

Scan mode routines
• Do you need to provide Scan mode routines?

You can optionally define the scan behavior of the instruction in different Scan modes. This lets you define

unique initialization behaviors on controller startup (Program -> Run), SFC step postscan, or EnableIn False

condition.

• In what language do Scan mode routines need to be written?

Test
• How will you test the operation of your Add-On Instruction before commissioning it?

• What possible unexpected inputs could the instruction receive, and how will the instruction handle these

cases?

Help documentation
• What information needs to be in the instruction help?

When you are creating an instruction, you have the opportunity to enter information into various description

fields. You will also need to develop information on how to use the instruction and how it operates.

30 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm087_-en-p.pdf

Chapter 1 Designing Add-On Instructions

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 31

32 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2

Defining Add-On Instructions

Create an Add-On Instruction
Use the New Add-On Instruction dialog to create Add-On Instructions.

To create a New Add-On Instruction

1. Open a new or existing project.

2. Right-click the Add-On Instructions folder in the Controller Organizer and select New Add-On Instruction.

3. In the Name box, type a unique name for the new instruction.

The name can be up to 40 characters long. It must start with a letter or underscore and must contain only

letters, numbers, or underscores. The name must not match the name of a built-in instruction or an existing

Add-On Instructions.

4. In Description box, type a description for the new instruction, maximum 512 characters.

5. For safety projects, in the Class box, select either a Safety or Standard.

The Class field is available on the Add-On Instructions dialog box for safety controller projects.

6. In the Type box, select a programming language for Add-On Instruction logic.

The language Type defaults to Ladder Diagram for safety Add-On Instructions.

7. In Revision box, assign a Revision level for the instruction.

8. (Optional) In the Revision Note box, type a Revision note.

9. (Optional) In the Vendor box, add information about the Vendor.

10. Click OK to create the instruction.

Create a parameter
Use the Add-On Instruction Definition Editor to create the parameters for your instructions. Follow these steps to

define the parameters for your instruction.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 33

Chapter 2 Defining Add-On Instructions

To create a parameter

1. In the Controller Organizer, right-click an Add-On Instruction and select Open Definition.

2. On the Parameters tab, in the blank Name box, type a name for a parameter.

3. In the Usage box, select Input, Output, or InOut.

Tip: An instruction with only Input parameters, except EnableOut, is treated as an input

instruction in a Ladder diagram and is displayed left-justified. The EnableOut parameter is used

for the rung-out condition.

4. In the Data Type list, choose the type based on the parameter usage:

◦ An Input parameter is a passed by value into the Add-On Instruction and must be a SINT, INT, DINT,

REAL, or BOOL data type.

◦ An Output parameter is a passed by value out of the Add-On Instruction and must be a SINT, INT, DINT,

REAL, or BOOL data type.

◦ An InOut parameter is a passed by reference into the Add-On Instruction and can be any data type

including structures and array. Module reference parameters must be InOut parameters with the

MODULE data type (see Creating a module reference parameter on page 35).

5. If this parameter is intended as an alias for an existing local tag, select the Alias For check box to select the

local tag or its member.

Tip: You can also designate a parameter as an alias for a local tag by using the Tag Editor. See

Edit Parameters and Local Tags on page 38.

6. In the Default values list, set the default values.

Default values are loaded from the Add-On Instruction definition into the tag of the Add-On Instruction data

type when it is created, and anytime a new Input or Output parameter is added to the Add-On Instruction.

34 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

Tip: If you want to update existing invocations of the instruction to the new default values, select

the Copy all default values of parameters and local tags whose values were modified to all

tags of this instruction type check box at the bottom of the Add-On Instruction Definition Editor.

For details on copying default values, see Copying Parameter or Local Tag Default Values on page

39.

7. In the Style list, set the display style.

8. In the Req and Vis lists, select the check box to make the parameter required or visible, as desired.

See Determining which parameters to make visible or required on page 26. If you decide to make the

parameter required, it will also be visible.

9. In the Description list, type a description, maximum 512 characters.

This description appears in the instruction’s help.

10. In the External Access list, select a type for Input or Output parameters; Read/Write, Read Only, None.

11. In the Constant list, select InOut parameters check box you want to designate as constant values.

12. Repeat for additional parameters.

Tip: You can also create parameters by using the Tag Editor, New Parameter or Local Tag dialog

box, or by right-clicking a tag name in the logic of your routine.

The order that you create the parameters is how they appear in the data type and on the instruction face. To

rearrange the order of the Parameter tab on the Add-On Instruction Definition Editor, select the parameter row and

click Move Up or Move Down.

Create a module reference parameter
A module reference parameter is an InOut parameter of the MODULE data type that you use to access and modify

attributes in a hardware module from within the Add-On Instruction. For information on using a module reference

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 35

Chapter 2 Defining Add-On Instructions

parameter, see Referencing a hardware module on page 73. You can use the module reference parameter in two

ways:

• In a GSV or SSV instruction, or an Add-on Instruction, you can use the module reference parameter as the

Instance Name or Add-on Instruction parameter.

• In an Add-on Instruction, or in a GSV or SSV instruction, you can pass the module reference parameter into

the InOut parameter of another nested Add-on Instruction.

There are several limitations on module reference parameters:

• Module references parameters can only be InOut parameters with the MODULE data type.

• You can use a module reference parameter only in standard programs and Add-on Instructions, not in Safety

programs or Safety Add-on Instructions.

• Program parameters that reference a module must connect to a module, and cannot reference other module

reference parameters.

• Module reference parameters must be program or Add-on Instruction scope, not controller scope.

Tip: You cannot create a module reference tag. You can only reference modules using an InOut

parameter of the MODULE data type.

To create a module reference parameter

1. In the Controller Organizer, right-click an Add-On Instruction and select Open Definition.

2. On the Parameters tab, in the blank Name box, type a name for a parameter.

3. In the Usage box, select InOut.

4. In the Data Type list, select the MODULE type. This data type is for the Module object, and contains the

following information:

◦ Entry Status

◦ Fault Code

◦ Fault Info

◦ FW Supervisor Status

◦ Force Status

◦ INSTANCE

◦ LED Status

◦ Mode

◦ Path

For more information on the Module object, search the Logix Designer online help.

5. In the Description list, type a description, maximum 512 characters.

This description appears in the instruction’s help.

6. In the Constant list, select InOut parameters check box you want to designate as constant values.

Tip: You can also create parameters by using the Tag Editor, New Parameter or Local Tag dialog

box, or by right-clicking a tag name in the logic of your routine.

For more information on using parameters in programs, see Logix5000 Controllers Program Parameters

Programming Manual, publication 1756-PM021.

36 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm021_-en-p.pdf

Chapter 2 Defining Add-On Instructions

Create local tags
Use the Add-On Instruction Definition Editor to create the local tags for your instructions. Local tags contain data that

will be used by your Add-On Instruction but that you do not want exposed to the user of your instruction. Local tags do

not appear in the data structure for an Add-On Instruction because they are hidden members.

Tip: You can access local tag values from an HMI by specifying the name of the local tag as a member in

an Add-On Instruction type tag. For example, the Motor_Starter v1.0 instruction, shown in step 2, has a tag

called ‘CheckAuxContact’. This tag can be referenced by an HMI through ‘instancetag.CheckAuxContact’,

where instancetag is the tag used to call the instruction.

To create local tags

1. In the Controller Organizer, right-click an instruction and select Open Definition.

2. On the Local Tags tab, in the blank Name box field, type a name for a new tag.

3. In the Data Type list, select a data type from the Select Data Type dialog box.

You cannot use these data types for local tags - ALARM_ANALOG, ALARM_DIGITAL, MESSAGE, MODULE, or any

Motion data types, for example Axis or MOTION_GROUP. To use these type of tags in your Add-On Instruction,

define an InOut Parameter. Local tags also are limited to single dimension arrays, the same as User-Defined

Data Types.

Tip: Refer to the safety reference manual for your controller, listed in the Additional resources on

page , for a list of data types supported for safety instructions.

4. In the Default list, set the default values.

Default values are loaded from the Add-On Instruction definition into the tag of the Add-On Instruction data

type when it is created or any time a new tag is added to the Add-On Instruction.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 37

unique_12
unique_12
unique_12

Chapter 2 Defining Add-On Instructions

Tip: Select the Copy all default values of parameters and local tags whose values were

modified to all tags of this instruction type check box at the bottom of the Add-On Instruction

Definition Editor if you want to update existing invocations of the instruction to the new default

values. For details on copying default values, see Copying Parameter or Local Tag Default Values

on page 39.

5. In the Style list, set the display style.

6. In the Description list, type a description, a maximum of 512 characters.

7. Repeat for additional local tags.

Tip: When you create a local tag from the Local Tags tab, the External Accesssetting defaults to

 None. You can edit the External Access setting by using the Tag Editor. See Edit Parameters and

Local Tags on page 38.

Editing parameters and local tags
You can also add and edit parameters and local tags on the Edit Tags tab.

Updates to arguments following parameter edits
If you edit an Add-On Instruction by adding, deleting, renaming, reordering, or changing the status or usage type of

one or more parameters, RSLogix 5000 software, version 18 and later, automatically updates the arguments on calls

to the instruction.

38 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

ATTENTION: Source-protected routines and other source-protected Add-On Instructions that use the

edited Add-On Instruction are not automatically updated if the source key is unavailable. The Add-On

Instruction or routine may still verify, but the resulting operation may not be as intended.

It is your responsibility to know where Add-On Instructions are used in logic when you make edits to

existing Add-On Instructions.

A confirmation dialog box shows you the impacts of the edits and lets you review the pending changes before

confirming or rejecting them.

• An asterisk identifies parameters with changes pending.

• Existing arguments are reset to the parameters they were originally associated with.

• Newly added parameters are inserted with a ‘?’ in the argument field, except for Structured Text, where the

field is blank.

• Unknown parameters are created for arguments where associated parameters have been deleted.

To accomplish this update, Logix Designer application tracks the changes made to the Add-On Instruction parameters

from the original instruction to the final version. In contrast, the import and paste processes compare only parameter

names to associate arguments with parameters. Therefore, if two different parameters have the same name, but

different operational definitions, importing or pasting may impact the behavior of the instruction.

Copy parameter or local tag default values
In RSLogix 5000 software, version 18 or later, you can copy either parameter or local tag default values to all tags of

the Add-On Instruction data type or just to specific tags. You can do so only when you are oWine.

ATTENTION: Values cannot be modified when the instance tags are part of a source-protected Add-

On Instruction or you do not have suXcient permission to make edits.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 39

Chapter 2 Defining Add-On Instructions

If you change the default values of a parameter or local tag by using the Add-On Instruction Definition editor, you

can copy the modified values to all of the tags of the Add-On Instruction data type by selecting the Copy all default

values of parameters and local tags whose values were modified to all tags of this instruction type check box.

You can also click the copy default values icon to copy default values to all tags the Add-On Instruction data type. The

icon appears on the watch pane (as a context menu), data monitor, and logic editor when the Data Context is the Add-

On Instruction’s definition.

If you want to select which specific tags and values to copy, click the pull-down arrow of the copy default values icon

and select Copy Specified Values.

40 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

The Copy Default Values dialog box shows the current default values for the parameters and local tags, and the

instance tags where the Add-On Instruction is used or referenced.

Select the check boxes to select which values to copy to which tags, and click OK.

Creating logic for the Add-On instruction
Use a logic editor to create logic for an Add-On Instruction.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 41

Chapter 2 Defining Add-On Instructions

To create logic for an Add-On Instruction

1. In the Controller Organizer, expand the Assets folder and the Add-On Instructions folder.

2. Expand the instruction and double-click the logic routine to open it.

3. Edit your logic using the available language editors.

Execution considerations for Add-On Instructions
An Add-On Instruction is executed just like any other routine belonging to a particular program. Because another

task can preempt a program containing an Add-On Instruction that is being executed, an Add-On Instruction may be

interrupted prior to completing its execution.

In standard programs, you can use the User Interrupt Disable/Enable (UID/UIE) instructions to block a task switch if

you want to be sure the Add-On Instruction executes uninterrupted before switching to another task.

Tip: UID and UIE instructions are not supported in the safety task of GuardLogix projects.

Optimizing performance
The performance depends on the structuring, configuration, and the amount of code in an Add-On Instruction. You

can pass large amounts of data through a structure by using an InOut parameter. The size of data referenced by an

InOut parameter does not impact scan time and there is no difference between passing a user-defined type tag or an

atomic tag because it is passed by reference.

42 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

When a rung condition is false, any calls to an Add-On Instruction are still processed even though the logic routine is

not executed. The scan time can be affected when many instances of an Add-On Instruction are executed false. Be

sure to provide instructions in your documentation if an Add-On Instruction can be skipped when the rung condition

is false.

Defining operation in different scan modes
To provide Add-On Instructions with the same flexibility as built-in instructions, optional Scan mode routines can

be configured to fully define the behavior of the instruction. Scan mode routines do not initially exist for Add-On

Instructions. You can create them depending upon the requirements of your instruction.

Like all built-in instructions in the controller, Add-On Instructions support the following four controller Scan modes.

Scan Mode Description

True The instruction is scanned as the result of a true rung condition or the EnableIn

parameter is set True.

False The instruction is scanned as the result of a false rung condition or the EnableIn

parameter is set False. Instructions in the controller may or may not have logic that

executes only when that instruction is scanned false.

Prescan Occurs when the controller either powers up in Run mode or transitions from Program

to Run. Instructions in the controller may or may not have logic that executes only

when that instruction is executed in Prescan mode.

Postscan(1) Occurs as a result of an Action in a Sequential Function Chart (SFC) routine becoming

inactive if SFCs are configured for Automatic Reset. Instructions in the controller

may or may not have logic that executes only when that instruction is executed in

Postscan mode.

1
Postscan mode routines cannot be created for safety Add-On Instructions because safety instructions do not

support SFC.

The default behavior for executing an Add-On Instruction with no optional scan routines created may be suXcient for

the intended operation of the instruction. If you do not define an optional Scan Mode, the following default behavior of

an Add-On Instruction occurs.

Scan Mode Result

True Executes the main logic routine of the Add-On Instruction.

False Does not execute any logic for the Add-On Instruction and does

not write any outputs. Input parameters are passed values.

Prescan Executes the main logic routine of the Add-On Instruction in

Prescan mode. Any required Input and Output parameters'

values are passed.

Postscan Executes the main logic routine of the Add-On Instruction in

Postscan mode.

For each Scan mode, you can define a routine that is programmed specifically for that Scan mode and can be

configured to execute in that mode.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 43

Chapter 2 Defining Add-On Instructions

Scan Mode Result

True The main logic routine for the Add-On Instruction executes (not

optional).

False The EnableIn False routine executes normally in place of the

main logic when a scan false of the instruction occurs. Any

required (or wired in FBD) Input and Output parameters' values

are passed.

Prescan The Prescan routine executes normally after a prescan

execution of the main logic routine. Any required Input and

Output parameters' values are passed.

Postscan The Postscan routine executes normally after a postscan

execution of the main logic routine.

Enabling scan modes
The Scan Modes tab in the Instruction Definition Editor lets you create and enable execution of the routines for the

three Scan modes: Prescan, Postscan, and EnableInFalse.

Create a prescan routine
When the controller transitions from Program mode to Run mode or when the controller powers up in Run mode, all

logic within the controller is executed in Prescan mode. During this scan, each instruction may initialize itself and

some instructions also initialize any tags they may reference. For most instructions, Prescan mode is synonymous

with scanning false. For example, an OTE instruction clears its output bit when executed during Prescan mode. For

others, special initialization may be done, such as an ONS instruction setting its storage bit during Prescan mode.

During Prescan mode, all instructions evaluate false so conditional logic does not execute.

The optional Prescan routine for an Add-On Instruction provides a way for an Add-On Instruction to define additional

behavior for Prescan mode. When a Prescan routine is defined and enabled, the Prescan routine executes normally

after the primary logic routine executes in Prescan mode. This is useful when you want to initialize tag values to

some known or predefined state prior to execution. For example, setting a PID instruction to Manual mode with a 0%

output prior to its first execution or to initialize some coeXcient values in your Add-On Instruction.

When an Add-On Instruction executes in Prescan mode, any required parameters have their data passed.

• Values are passed to Input parameters from their arguments in the instruction call.

• Values are passed out of Output parameters to their arguments defined in the instruction call.

These values are passed even when the rung condition is false in Ladder Diagram or when the instruction call is in a

false conditional statement in Structured Text. When Function Block Diagram routines execute, the data values are

copied to all wired inputs and from all wired outputs, whether or not the parameters are required.

To create a Prescan routine

1. In the Controller Organizer, right-click an instruction and select Open Definition.

2. Click the Scan Modes tab.

44 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

3. Click New for Prescan routine.

4. On the New Scan Mode Routine dialog box, from the Type list, select the type of programming language;

Ladder Diagram, Function Block, or Structured Text.

5. In the Description box, type the Prescan behavior.

6. Click OK to create the routine and return to the Scan Modes tab.

7. Define if the prescan routine executes (or not) by checking or clearing Execute Prescan routine after the

logic routine is prescanned check box.

The Prescan routine can now be edited like any other routine.

Create a postscan routine
Postscan mode occurs only for logic in a Sequential Function Chart (SFC) Action when the Action becomes inactive

and the SFC language is configured for Automatic Reset (which is not the default option for SFC). When an SFC Action

becomes inactive, then the logic in the Action is executed one more time in Postscan mode. This mode is similar to

Prescan in that most instructions simply execute as if they have a false condition. It is possible for an instruction to

have different behavior during Postscan mode than it has during Prescan mode.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 45

Chapter 2 Defining Add-On Instructions

When an Add-On Instruction is called by logic in an SFC Action or a call resides in a routine called by a JSR from an

SFC Action, and the Automatic Reset option is set, the Add-On Instruction executes in Postscan mode. The primary

logic routine of the Add-On Instruction executes in Postscan mode. Then if it is defined and enabled, the Postscan

routine for the Add-On Instruction executes. This could be useful in resetting internal states, status values, or de-

energizing instruction outputs automatically when the action is finished.

Tip: Because safety Add-On Instructions cannot be called from an SFC Action, this option is disabled for

safety Add-On Instructions.

To create a postscan routine

1. In the Controller Organizer, right-click an instruction and select Open Definition.

2. Click the Scan Modes tab.

3. Click New for Postscan Routine.

4. On the New Scan Mode Routine dialog box, from the Type list, select the type of programming language;

Ladder Diagram, Function Block, or Structured Text.

5. In the Description box, type the Postscan behavior.

6. Click OK to create the routine and return to the Scan Modes tab.

46 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

7. Define if the postscan routine executes (or not) by checking or clearing Execute Postscan routine after the

logic routine is postscanned.

The Postscan routine can now be edited like any other routine.

Create an EnableInFalse routine
When defined and enabled for an Add-On Instruction, the EnableInFalse routine executes when the rung condition is

false or if the EnableIn parameter of the Add-On Instruction is false (0). This is useful primarily for scan false logic,

when used as an output instruction in a Ladder routine. A common use of scan false is the setting of OTEs to the

de-energized state when the preceding rung conditions are false. An Add-On Instruction can use the EnableInFalse

capability to let you define behavior for the False conditions.

When the Add-On Instruction is executed in the false condition and has an EnableInFalse routine defined and enabled,

any required parameters have their data passed.

• Values are passed to Input parameters from their arguments in the instruction call.

• Values are passed out of Output parameters from their arguments in the instruction call.

If the EnableInFalse routine is not enabled, the only action performed for the Add-On Instruction in the false condition

is that the values are passed to any required Input parameters in ladder logic.

Follow these steps to create an EnableInFalse routine. For more information on other scan mode instructions, see

Prescan routine on page 44 and Postscan routine on page 45.

To create an EnableInFalse routine

1. In the Controller Organizer, right-click an instruction and select Open Definition.

2. Click the Scan Modes tab.

3. Click New on EnableInFalse routine.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 47

Chapter 2 Defining Add-On Instructions

4. On the New Scan Mode Routine dialog box, from the Type list, select the type of programming language;

Ladder Diagram, Function Block, or Structured Text.

5. In the Description box, type the EnableInFalse behavior.

6. Click OK to create the routine and return to the Scan Modes tab.

7. Define if EnableIn False routine executes (or not) by checking or clearing Execute EnableInFalse routine.

The EnableInFalse routine can now be edited like any other routine.

Using the EnableIn and EnableOut parameters
The EnableIn and EnableOut parameters that appear by default in every Add-On Instruction have behaviors that

conform to the three language environments: Ladder Diagram, Function Block Diagram, and Structured Text.

To execute the primary logic routine in any of the language environments, the EnableIn parameter must be True

(1). In general, the EnableIn parameter should not be referenced by the primary logic routine within the instruction

definition. The EnableOut parameter will, by default, follow the state of the EnableIn parameter but can be overridden

by user logic to force the state of this parameter.

Tip: If EnableIn is False, then EnableOut cannot be made True in an EnableIn False routine.

If the EnableIn parameter of the instruction is False (0), the logic routine is not executed and the EnableOut

parameter is set False (0). If an EnableInFalse routine is included in the instruction definition and it is enabled, the

EnableInFalse routine will be executed.

EnableIn parameter and ladder diagrams
In the ladder diagram environment, the EnableIn parameter reflects the rung state on entry to the instruction. If the

rung state preceding the instruction is True (1), the EnableIn parameter will be True and the primary logic routine

of the instruction will be executed. Likewise, if the rung state preceding the instruction is False (0), the EnableIn

parameter will be False and the primary logic routine will not be executed.

48 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

Tip: An instruction with only Input parameters, except EnableOut, is treated as an input instruction (left-

justified) in a Ladder Diagram. The EnableOut parameter is used for the rung-out condition.

EnableIn parameter and function blocks
In the function block environment, the EnableIn parameter can be manipulated by the user through its pin

connection. If no connection is made, the EnableIn parameter is set True (1) when the instruction begins to execute

and the primary logic routine of the instruction will be executed. If a wired connection to this parameter is False (0),

the primary logic routine of the instruction will not execute. Another reference writing to the EnableIn parameter,

such as a Ladder Diagram rung or a Structured Text assignment, will have no influence on the state of this parameter.

Only a wired connection to this parameter’s input pin can force it to be False (0).

EnableIn parameter and structured text
In the structured text environment, the EnableIn parameter is always set True (1) by default. The user cannot

influence the state of the EnableIn parameter in a Structured Text call to the instruction. Because EnableIn is always

True (1) in structured text, the EnableInFalse routine will never execute for an instruction call in structured text.

Change the class of an Add-On Instruction
You can change the class of a safety Add-On Instruction so that it can be used in a standard task or standard

controller.

To change the class of an Add-On Instruction

• You can change the class in a safety project if the instruction does not have an instruction signature, you are

oWine, the application does not have a safety task signature, and is not safety-locked.

• You can also change the class from standard to safety so that the Add-On Instruction can be used in the

safety task.

Changing the class of an Add-On Instruction results in the same class change being applied to the routines,

parameters, and local tags of the Add-On Instruction. The change does not affect nested Add-On Instructions or

existing instances of the Add-On Instruction.

If any parameters or tags become unverified due to the change of class, they are identified on the Parameters and

Local Tags tabs of the Add-On Instruction Editor.

If any of the restrictions for safety Add-On Instructions are violated by changing the class from standard to safety,

one of the following errors is displayed and the change does not succeed:

• Routines must be of Ladder Diagram type.

• Safety Add-On Instructions do not support the Postscan routine.

• One or more parameters or local tags have an invalid data type for a safety Add-On Instruction.

You must edit the parameter, tag, or routine types before the class change can be made.

Tip: If the safety controller project contains safety Add-On Instructions, you must remove them from the

project or change their class to standard before changing to a standard controller type.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 49

Chapter 2 Defining Add-On Instructions

Testing the Add-On Instruction
You need to test and troubleshoot the logic of an instruction to get it working.

Tip: When a fault occurs in an Add-On Instruction routine, a fault log is created that contains extended

information useful for troubleshooting.

Prepare to test an Add-On Instruction
Before you start to test an Add-On Instruction, do the following.

To prepare to test an Add-On Instruction

1. Open a project to debug oWine.

Tip: Add-On Instructions can only be created or modified when oWine. You can add, delete, or

modify tag arguments in calls to Add-On Instructions while editing online, but you cannot edit

arguments inside the Add-On Instruction while online.

2. Add the Add-On Instruction to the project, if it is not already there.

Test the flow
Follow these steps to test the flow of an Add-On Instruction.

To test the flow

1. Add a call to the instruction in a routine in the open project.

2. Assign any arguments to required parameters for your call.

3. Download the project.

Monitor logic with data context views
You can simplify the online monitoring and troubleshooting of your Add-On Instruction by using Data Context views.

The Data Context selector lets you select a specific call to the Add-On Instruction that defines the calling instance

and arguments whose values are used to visualize the logic for the Add-On Instruction.

Tip: When troubleshooting an Add-On Instruction, use a non-arrayed instance tag for the call to the

instruction. This lets you monitor and troubleshoot the instruction's logic routine with a data context.

Variable indexed arrays cannot be used to monitor the logic inside an Add-On Instruction.

To monitor logic with data context views

50 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

Follow these steps to monitor the logic.

1. Go into Run mode.

2. Right-click the instruction call and select Open Instruction Logic.

The logic routine opens with animated logic for the specific calling instance.

Verifying individual scan modes
The most straightforward method to verify Scan mode operation is to execute the instruction first with the Scan

mode routine disabled, then again with it enabled. Then you can determine whether the Scan mode routine performed

as expected.

Instruction Description

True This is simply the execution of the main logic routine.

False In a ladder logic target routine, this entails placing an XIC before

an instance of the instruction and evaluating instruction results

when the XIC is false.

In a Function Block target routine, this entails executing an

instance of the instruction with the EnableIn parameter set to

zero (0).

Prescan Place the controller in Program mode, then place it in Run

mode.

Postscan With the controller configured for SFC Automatic Reset, place

an instance of the instruction into the Action of an SFC. Run

the SFC such that this Action is executed and the SFC proceeds

beyond the step that is associated with this Action.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 51

Chapter 2 Defining Add-On Instructions

Source protection for an Add-On Instruction
You can apply source protection to your Add-On Instruction to protect your intellectual property or prevent

unintended edits of a validated source.

Cannot modify the Source Protection settings if the Add-On Instruction is sealed. To source protect and seal an Add-

On Instruction, apply the source protection settings before sealing.

Source protection limits user access to your Add-On Instruction or blocks access to the internal logic or local tags

used by the instruction. You can protect Add-On Instructions using Source Key protection or License protection. You

can also apply Execution Protection to source-protected components to allow execution only on controllers with a

specific execution license.

Source Key protection:

• Protects components using existing source keys.

Tip: You can optionally allow source-protected components

to be available in a read-only format on a system that does

not have the source key required for access.

Tip: Apply Source Key protection before generating an

instruction signature for your Add-On Instruction definition.

You will need the source key to create a signature history

entry. When source protection is enabled, you can still copy

the instruction signature or signature history, if they exist.

License-based protection:

• Protects components with specific licenses.

Tip: License-Based Source Protection is not supported on Sequential Function Chart routines in

version 30 of the Logix Designer application.

• Execution Protection is an extension of License-Based Source Protection. You can apply Execution Protection

to limit the execution of routines and Add-On Instructions, including equipment phase state routines, to

controllers that contain a specific execution license.

• When you protect a component with License-Based Source Protection, you can also lock it.

When locking a component, the routine's logic is compiled into executable code and encrypted. The code

is decrypted by the controller when it is ready for execution. As a result, sharing project files containing

locked components with users without licenses to use the locked components is possible. Those users

can use unprotected parts of the project, upload and download the project file, and copy and paste locked

components into other project files. However, if a component is protected using the Protect with controller

key and specific license option, executing the project requires an SD card with the correct execution

license.

Tip: Execution Protection and component locking is supported only on CompactLogix 5380,

CompactLogix 5480, and ControlLogix 5580 controllers in version 30 of the Logix Designer

application.

52 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

Enable the source protection feature
If source protection is unavailable and not listed in your menus, follow the instructions for enabling Source Protection

in the Logix5000 Controllers Security Programming Manual, publication 1756-PM016.

The Security Programming manual provides detailed instructions for configuring Source Protection for routines and

Add-On Instructions.

Generating an Add-On Instruction signature
The Signature tab on the Add-On Instruction Definition Editor lets you manage the instruction signature, create

signature history entries, and view the safety instruction signature, if it exists. Instruction signatures are applied

to the definition of the Add-On Instruction. All instances of that Add-On Instruction are sealed when the signature is

applied.

Generate, remove, or copy an instruction signature
Use this procedure to generate, remove, or copy an instruction signature

To generate, remove, or copy an instruction signature

1. On the Signature tab in the Add-On Instruction Definition Editor, click Generate to create an instruction

signature or Remove to delete the instruction signature.

You must be oWine to generate or remove an instruction signature. Both actions change the Last Edited

Date.

IMPORTANT: If you remove an instruction signature when the Add-On Instruction also has a

safety instruction signature, the safety instruction signature is also deleted.

1. Click Copy to copy the instruction signature and the safety instruction signature, if it exists, to the clipboard

to facilitate record-keeping.

IMPORTANT: If an invalid instruction signature is detected during verification, an error

message indicates that the signature is invalid. You must remove the instruction signature,

review the Add-On Instruction, and generate a new instruction signature.

Tip:

The instruction signature is not guaranteed to be maintained when migrating between major revisions of

RSLogix5000 or <Product_Name_RSL5K>.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 53

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm016_-en-p.pdf

Chapter 2 Defining Add-On Instructions

Create a signature history entry
The signature history provides a record of signatures for future reference. A signature history entry consists of the

name of the user, the instruction signature, the timestamp value, and a user-defined description. You can only create

a signature history if an instruction signature exists and you are oWine. Creating a signature history changes the

Last Edited Date, which becomes the timestamp shown in the history entry. Up to six history entries may be stored.

To create a signature history entry

1. On the Signature tab on the Add-On Instruction Definition Editor, click Add to History.

2. In the Create History Entry description box, type up to 512 characters long, for the entry.

3. Click OK.

Tip: To facilitate record-keeping, you can copy the entire signature history to the clipboard by

selecting all the rows in the signature history and choosing Copy from the Edit menu. The data is

copied in tab separated value (TSV) format.

To delete the signature history, click Clear Signature History. You must be oWine to delete the Signature History.

Generate a Safety Instruction Signature
When a sealed safety Add-On Instruction is downloaded for the first time, a SIL 3 safety instruction signature is

automatically generated. Once created, the safety instruction signature is compared at every download.

If Logix Designer application detects an invalid safety instruction signature value, it generates a new safety

instruction signature value in the oWine project and displays a warning indicating that the safety instruction

signature was changed. The safety instruction signature is deleted if the instruction signature is removed.

IMPORTANT: After testing the safety Add-On Instruction and verifying its functionality, you must

record the instruction signature, the safety instruction signature and the timestamp value. Recording

these values will help you determine if the instruction functionality has changed.

Refer to the safety reference manual for your controller, listed in the Additional resources on page

, for details on safety application requirements.

54 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

unique_12
unique_12

Chapter 2 Defining Add-On Instructions

View and print the instruction signature
When the instruction signature has been generated, Logix Designer application displays the instruction with the blue

seal icon in the Controller Organizer, on the Add-On Instruction title bar, and in the Logic Editor.

Tip: When an instruction is sealed, the instruction signature is displayed on the faceplate of the

instruction in the Ladder Diagram Editor and the Function Block Diagram Editor.

Ladder editor Function Block Diagram editor

To view and print the instruction signature

• Turn off the display of the instruction signature in the Workstation Options dialog box of the Logix Designer

application.

• View the instruction signature and the safety instruction signature on the Quick View pane of the Controller

Organizer and on the Signature tab of the Instruction Definition Editor.

The Add-On Instruction name, revision, instruction signature, safety instruction signature, and timestamp are

printed on the Add-On Instruction Signature Listing report.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 55

Chapter 2 Defining Add-On Instructions

Tip: The first 32 bits of an AOI's signature (Safety ID) as it appears in the Quick View Pane and in

the signature report are comparable to the AOI's signature as it appears on the AOI Properties >

Signature tab.

• Include the instruction signature, safety instruction signature, and signature history on the Add-On

Instruction report by clicking Print Options on the Generate Report dialog box.

Create an alarm definition
Use tag-based alarms and alarm definitions to notify users of conditions that they might need to respond to, such

as temperature over-limit, excessive current, or a motor failure. A tag-based alarm is similar to an instruction-based

alarm (ALMA and ALMD instructions) in that it monitors a tag value to determine the alarm condition. However, a tag-

based alarm is not part of the logic program and does not increase the scan time for a project.

An alarm definition is associated with an Add-On Instruction or a defined data type. When a tag is created using a

data type or an Add-On Instruction that has alarm definitions, alarm conditions are created automatically based on

the alarm definitions.

Tip: Tag-based alarms and alarm definitions are supported only on CompactLogix 5380, CompactLogix

5480, and ControlLogix 5580 controllers.

To create an alarm definition:

1. On the Controller Organizer, right-click the Alarms folder and select New Alarm Definition.

You can also right-click a scalar tag or parameter of an Add-On Instruction and select Add Alarm Definition.

2. In the Name box, enter a name for the alarm definition.

3. In the Input box, add an input tag.

4. To enable all instances of the alarm, select the Required to be used and evaluated check box. All new

alarms definitions are disabled by default.

5. Use the tabs on the New Alarm Definition dialog box to configure additional settings:

◦ General - Used to configure the name, input tag, trigger condition, timing, severity, message,

associated tags, and shelving settings.

◦ Class/Group - Used to identify the class and group name for the alarm definition.

56 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

◦ Advanced - Used to assign additional settings to the alarm definition, such as an FactoryTalk View

command to run in response to an alarm, latch state, acknowledgment requirement, alarm set

inclusion, and use of the alarm.

Tip: Alarm definitions associated with the tag are not included when an Add-On Instruction

tag is copied and pasted in a project.

After you copy and paste an Add-On Instruction tag, open the Alarm Definition list and

copy and paste the alarm definition for the tag. Follow these steps:

a. In the Controller Organizer, right-click Alarms and select Edit Alarm Definitions.

b. Right-click the alarm definition for the Add-On Instruction tag and select Copy.

c. Right-click again and select Paste. The alarm definition is pasted into the list with

_000 added to the alarm name.

d. Double-click the copy of the alarm definition to open the Alarm Definition

Properties dialog box.

e. In the Input box, change the input tag to the Add-On Instruction tag that you copied

and pasted.

Access attributes from Add-On Instruction alarm sets
The alarms contained in an Add-On Instruction definition, a structured tag of an Add-On Instruction definition, or an

array tag of an Add-On Instruction definition can be referenced as an alarm set. Use these alarm set attributes as

operands in logic.

When you reference an attribute from an individual alarm, you insert the owner of the alarm in the operand syntax.

Similarly, when you reference an attribute from an Add-On Instruction alarm set, you insert the alarm set container

(the AOI definition, AOI structured tag, or AOI array tag) in the operand syntax.

To access attributes from an Add-On Instruction alarm set

1. In the logic editor, create an instruction.

2. On the instruction operand that accesses an Add-On Instruction alarm set attribute, enter the following

syntax:

◦ The container for the alarm set.

◦ @AlarmSet

◦ The attribute to access.

To access an attribute of an alarm set in a container that is also the Add-On Instruction in which you

are entering the logic, enter THIS, followed by a period. For alarm definitions associated with a nested

Add-On Instruction, the alarm definition attributes can be accessed programmatically through the

nested Add-On Instruction.

The following table lists example syntax.

To access: Alarm set container Syntax

Attribute of an alarm set in a

container that is also the AOI in

which you are entering the logic

MyAOI THIS.@Alarms.FailToOpen.InAlarm

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 57

Chapter 2 Defining Add-On Instructions

To access: Alarm set container Syntax

Attribute of an alarm set in a

container that is an AOI definition

MyTank MyTank.@Alarms.FailToClose.AckRe

quired

Attribute of an alarm set in a

container that is an AOI array tag

MyTank[3] MyTank[3].@Alarms.FailToOpen.Ack

Required

Attribute of an alarm set in a

container that is an AOI structured

tag

MyTank.MyValve MyTank.MyValve.@Alarms.FailToClos

e.AckRequired

Tip:

In this version of the Logix Designer application, the @Alarms and @AlarmSet syntax is not supported in

the following instructions:

• CMP

• CPT

• FAL

• FSC

The following example shows how inserting an MOV instruction allows the @Alarms and @AlarmSet

syntax to work with CMP, CPT, FAL, and FSC instructions.

Unsupported expression:

CPT(Tag1, RightValve.ValveTimer.@Alarms.TM_ACC_1.Severity + Tag2)

Supported expression:

MOV(RightValve.ValveTimer.@Alarms.TM_ACC_1.Severity, MyIntermediateTag)

CPT(Tag1, MyIntermediateTag + Tag2)

Tip:

In this version of the Logix Designer application, in the Structured Text editor, the @Alarms and

@AlarmSet syntax is supported only in simple arithmetic expressions, such as a + b. The following

example shows how inserting an additional step allows creation of more complex arithmetic expressions.

Unsupported expression Alternative

cTag1 := cTag1.@Alarms.new.Severity

+ ::THIS.@AlarmSet.DisabledCount + 1;

cTag1 := cTag1.@Alarms.new.Severity

+ ::THIS.@AlarmSet.DisabledCount;

cTag1 := cTag1 + 1;

58 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

Creating instruction help
Custom instruction help is generated automatically as you are creating your Add-On Instructions. Logix Designer

application automatically builds help for your Add-On Instructions by using the instruction’s description, revision note,

and parameter descriptions. By creating meaningful descriptions, you can help the users of your instruction.

In addition, you can add your own custom text to the help by using the Extended Description field. You can provide

additional help documentation by entering it on the Help tab on the Add-On Instruction Definition Editor. The

instruction help is available in the instruction browser and from any call to the instruction in a language editor by

pressing F1.

Write clear descriptions
When writing your descriptions keep the following in mind.

To write clear descriptions

• Use short sentences and simple language.

• Be brief and direct when you write.

• Include simple examples.

• Proofread your entries.

This is an example of the Extended Description Text field in the Help tab on the Add-On Instruction Definition Editor.

This area lets you create directions on how to use and troubleshoot your instruction. The Instruction Help Preview

window shows how your text will look as generated instruction help.

Tip: When you are typing your text into the Extended Description Text field, you can use returns and

tabs in the field to format the text, and if you copy and paste text into the field tabs are preserved.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 59

Chapter 2 Defining Add-On Instructions

Document an Add-On Instruction
Follow these steps to create custom help for an instruction.

To document an Add-On Instruction

1. Right-click an Add-On Instruction and select Open Definition.

2. On the General tab, in the Extended Description Text box, type a description and a revision note for the

Add-On Instruction to explain the purpose of the instruction.

3. Click the Parameters tab in the Description box, type a meaningful description for each Parameter.

4. Right-click each routine located below the Add-On Instruction in the Controller Organizer and select

Properties.

5. In the Description box, type a description for execution of each routine.

a. For the logic routine, describe execution of the instruction when EnableIn is true.

b. For the EnableInFalse routine (if one exists), describe actions that will take place when EnableIn is false, such

as any outputs that get cleared.

c. For the Prescan routine (if one exists), briefly describe actions that will take place during the Prescan routine,

such as initialization of any parameters.

d. For the Postscan routine (if one exists), briefly describe actions that will take place during the Postscan

routine, such as initialization of any parameters resetting any internal state of the instruction.

1. Click the Help tab on the Add-On Instruction Definition Editor and type additional information in the

Extended Description field.

The extended description can include the following information:

◦ Additional parameter information

◦ Description of how the instruction executes

◦ Change history notes

2. Review the Help format in the preview window.

60 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

This is an example of the Logix Designer application generated help for the instruction. This information is

gathered from the definition descriptions that you complete when defining an instruction.

Project documentation
With RS Logix 5000 software, version 17 and later, you have the option to display project documentation, such as

tag descriptions and rung comments in any supported localized language. You can store project documentation for

multiple languages in a single project file rather than in language-specific project files. You define all the localized

languages that the project will support and set the current, default, and optional custom localized language. The

software uses the default language if the current language's content is blank for a particular component of the

project. However, you can use a custom language to tailor documentation to a specific type of project file user.

Enter the localized descriptions in your project, either when programming in that language or by using the import/

export utility to translate the documentation oWine and then import it back into the project. Once you enable project

documentation in application, you can dynamically switch between languages as you use the software.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 61

Chapter 2 Defining Add-On Instructions

Project documentation that supports multiple translations includes these variables:

• Component descriptions in tags, routines, programs, equipment phases, user-defined data types, and Add-On

Instructions

• Engineering units and state identifiers added to tags, user-defined data types, or Add-On Instructions

• Trends

• Controllers

• Alarm Messages (in configuration of ALARM_ANALOG and ALARM_DIGITAL tags)

• Tasks

• Property descriptions for module in the Controller Organizer

• Rung comments, SFC text boxes, and FBD text boxes

If you want to allow project documentation on an Add-On Instruction that is sealed with an instruction signature, you

must enter the localized documentation into your Add-On Instruction before generating the signature. Because the

signature history is created after the instruction signature is generated, the signature history is not translatable.

If the translated information already exists when you generate the Add-On Instruction signature, you can switch

the language while keeping the signature intact because the switch does not alter the instruction definition, it only

changes the language that is displayed.

For more information on enabling a project to support multiple translations of project documentation, refer to the

online help.

Motor starter instruction example
The Motor_Starter Add-On Instruction starts and stops a motor.

If the stop pushbutton is closed and the start pushbutton is pressed then:

• The motor gets the command to run.

• The instruction seals in the command, so the motor keeps running even after you release the start

pushbutton.

62 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

If the stop pushbutton is pressed (opened), then the motor stops. The following screen capture shows the General tab

for the Motor Starter Add-On Instruction.

The following screen capture shows the Parameters tab for the Motor Starter Example Definition Editor.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 63

Chapter 2 Defining Add-On Instructions

The following screen capture shows the Motor Starter Example ladder logic.

64 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

The following diagrams show the Motor Starter instruction called in three different programming languages. First is

Motor Starter Ladder Logic.

Here is the Motor Starter Function Block Diagram.

Here is the Motor Starter Structured Text.

Motor_Starter(Motor_Starter_ST, Stop_PB, Start_PB, Motor_Out_ST);

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 65

Chapter 2 Defining Add-On Instructions

Simulation instruction example
The Simulation_DT_1st Add-On Instruction adds a dead time and a first-order lag to an input variable. The following

screen capture shows the General tab for the Simulation Example Definition Editor.

The following screen capture shows the Parameter tab for the Simulation Example Definition Editor.

66 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 2 Defining Add-On Instructions

The following image shows the Simulation example logic.

Ladder diagram configuration
In this example, the instruction simulates a deadtime and lag (first order) process.

The Simulation_DT_1st instruction reads the control variable from the PID instruction. The PID instruction reads the

SimOutput Parameter of the Simulation_DT_1st instruction.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 67

Chapter 2 Defining Add-On Instructions

Function block diagram configuration
The PIDE instruction sends the control variable to the Simulation_DT_1st instruction. The Simulation_DT_1st

instruction calculates an output and sends it to the PIDE instruction as the process variable

Structured text configuration

68 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 3

Using Add-On Instructions

Introduction
Add-On Instructions are used in your routines like any built-in instructions. You add calls to your instruction and then

define the arguments for any parameters.

Access Add-On Instructions
The Add-On Instruction can be used in any one of the Ladder Diagram, Function Block, or Structured Text languages

(including Structured Text within Sequential Function Chart actions). The appearance of the instruction conforms to

the language in which it is placed.

To access Add-On Instructions

• Access them from any of the normal instruction selection tools.

• The instruction toolbar has an Add-On tab that lists all of the currently available Add-On Instructions in the

project.

IMPORTANT: Safety Add-On Instructions can be used only in safety routines, which are currently

restricted to ladder logic. Safety Add-On Instructions are shown in the Language Element toolbar

only when the routine is a safety routine.

Use the Add Ladder Element dialog box
Use the Add (language) Element dialog to add elements to add an element to logic.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 69

Chapter 3 Using Add-On Instructions

Use the Add (language) Element dialog

1. Press Alt + Insert anywhere in the editor or right-click the logic in the Editor and select Add Element.

2. From the Element list, select the Add-On Instruction you want to add to your routine.

70 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 3 Using Add-On Instructions

3. Click Instruction Help to display the instruction help for any instruction in the browser.

4. Click OK.

Including an Add-On Instruction in a routine
Follow this procedure when you want to use an Add-On Instruction in one of your routines.

1. Open the Add-On Instruction folder in the Controller Organizer and view the listed instructions.

If the instruction you want to use is not listed, you need to do one of the following:

◦ Create the instruction in your project.

◦ Copy and paste an instruction into your project.

◦ Get the file for an exported instruction definition and then import the instruction into your current

project.

2. Open the routine that will use the instruction.

3. Click the Add-On tab on the instruction toolbar.

4. Click the desired Add-On Instruction to insert it in the editor. Hover the cursor on an instruction to see a

preview of it.

5. Define arguments for each Parameter on the instruction call.

The instruction appears as follows in each of the languages.

Ladder Diagram:

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 71

Chapter 3 Using Add-On Instructions

Parameter With Description

Single question mark This is a required InOut parameter. Enter a tag.

Single and double question marks This is a required Input or Output parameter. Enter a tag.

Double question marks This is not a required parameter. You can either:

• Leave as is and use the default value.

• Enter a different value if it’s an Input parameter.

Function Block Diagram:

Item Description

Nub on the end of pin This is a required Input or Output parameter.

You must wire the pin to an IREF, OREF, connector, or another

block to verify.

Single question mark This is a required InOut parameter. Enter a tag.

No nub on the end of pin This is not a required parameter.

You can either:

• leave as is and use the default value.

• enter a different value if it’s an Input parameter.

NOTE: The instruction expects arguments for required parameters as listed in the instruction tooltip.

Tip: For help with an instruction, select the instruction and then press F1. In Structured Text, make sure

the cursor is in the blue instruction name.

Track an Add-On Instruction
Use component tracking to determine whether tracked components have been changed. The Logix Designer

application creates an overall tracked value to indicate the current state of tracked components.

Tracked components and their current states appear in the Tracked Components dialog box, which is accessible on

the Controller Properties dialog box - Security tab. The recommended limit on the number of Add-On Instructions

that can be tracked is 100. If this limit is exceeded, there might be a noticeable impact on performance in the Logix

Designer application.

72 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 3 Using Add-On Instructions

The FactoryTalk Security permission Add-On Instruction: Modify controls a user's ability to change the tracking

status for an Add-On Instruction.

Tip: Tips:

• Component tracking is supported only on

CompactLogix 5370, ControlLogix 5570, Compact GuardLogix 5370, and GuardLogix 5570

controllers

in version 30 of the Logix Designer application.

• To optimize performance, configure component tracking so that the tracked state value is

calculated on demand rather than at regular intervals.

To track an Add-On Instruction

1. In the Controller Organizer, highlight the component to track.

2. Right-click and select Include in tracking group.

3. To stop tracking a component, right-click and select Include in tracking group again.

Reference a hardware module
A module reference parameter is an InOut parameter of the MODULE data type that points to the Module Object of

a hardware module. You can use module reference parameters in both Add-on Instruction logic and program logic.

Since a module reference parameter is passed by reference, it can access and modify attributes in a hardware

module from an Add-On Instruction. Follow this procedure to use a module reference parameter from within the Add-

On Instruction. This example shows how to retrieve the communication path for a hardware module.

To reference a hardware module

1. Create the module reference parameter in the Add-On Instruction. See Creating a module reference

parameter on page 35.

2. Create a SINT tag in the Add-On Instruction to hold the module communication path.

3. Add a GSV instruction in the Add-On Instruction, using the programming language you chose for the Add-On

Instruction. The GSV instruction allows you to retrieve module information.

4. In the GSV instruction, choose the following values to retrieve the communication path to the module.

Attribute Value

Class Name Module

Instance Name The module reference parameter you created in the Add-On

Instruction (IO_ModuleSts below)

Attribute Name Path. This is the communication path to the module.

Dest The tag to hold the module path (Module_Path below)

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 73

Chapter 3 Using Add-On Instructions

1. In the routine that includes the Add-On Instruction, create another module reference parameter.

a. In the routine, right-click Parameters and Local Tags and then click New Parameter.

b. Enter the following values in the dialog box.

Attribute Value

Name ModuleRef_Slot01

Usage InOut parameter

Data Type MODULE

c. Click the down arrow in the Parameter Connections box, and choose a hardware module. This is the

module that the parameter references.

74 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 3 Using Add-On Instructions

2. Add the Add-On Instruction to the routine.

3. Connect the routine's module reference parameter to the Add-On Instruction's module reference parameter.

Double-click the question mark next to the Add-On Instructions module reference parameter, then click the

down arrow and choose the module reference parameter from the program.

You can now access the attributes associated with the Module Object from within the Add-On Instruction.

Tips for using an Add-On Instruction
This table describes programming tips for you to reference when using Add-On Instructions.

Topic Description

Instruction Help Use the instruction help to determine how to use the instruction

in your code.

Ladder Rungs In a ladder rung, consider if the instruction should be executed

on a false rung condition. It may improve scan time to not

execute it.

Data Types A data type defined with the Add-On Instruction is used for the

tag that provides context for the execution from your code. A

tag must be defined of this Add-On Instruction-defined type on

the call to the instruction.

Indexed Tag You can use an indirect array indexed tag for the Instruction

instance. One drawback is that you cannot monitor the Add-On

Instruction by using this as a data context.

Passing Data • Input and Output parameters are passed by value.

• InOut parameters are passed by reference.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 75

Chapter 3 Using Add-On Instructions

Programmatically access a parameter
Follow these procedures for any language when you want to access an Add-On Instruction parameter that isn't

available on the instruction face by default.

The following procedures demonstrate how to use the Jog parameter of the Motor Starter Add-On Instructions.

Using the Jog command in ladder diagram
The first rung sets the Jog bit of Motor_Starter_LD = Jog_PB.

Use another instruction, an assignment, or an expression to read or write to the tag name of the parameter. Use this

format for the tag name of the parameter:

Add_On_Tag.Parameter

76 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 3 Using Add-On Instructions

 Where Is

Add_On_Tag An instance tag defined by the Add On data type.

Parameter Name of the parameter.

Use the Jog command in a function block diagram
Any parameter can be made visible or invisible except those defined as required. Required parameters are always

visible. If the parameter is required, you will see it checked in the Properties dialog box.

To use the Jog command in a function block diagram

1. Click Properties for the instruction.

2. Select the Vis check box of the Jog parameter to use it in your diagram.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 77

Chapter 3 Using Add-On Instructions

3. Click OK.

4. Wire to the pin for the parameter.

Using the Jog command in structured text

Monitor the value of a parameter
Follow this procedure when you want to see or change a parameter value of an Add-On Instruction.

To monitor the value of a parameter

1. Open the Properties of the instruction based on what language you are using.

a. For either a Function Block or Ladder Diagram, click Properties for the instruction.

78 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 3 Using Add-On Instructions

b. For Structured Text, right-click the instruction name and select Properties.

1. Monitor the value of the parameters and change any if needed.

2. Type a new value for each parameter as needed.

3. Click Apply and when finished, click OK.

View logic and monitor with data context
Follow this procedure when you want to view the logic of an Add-On Instruction and monitor data values with the

logic.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 79

Chapter 3 Using Add-On Instructions

To view logic and monitor with data context

1. Right-click the instruction call in any routine.

2. Select Open Instruction Logic.

The Language Editor opens with the Add-On Instruction's logic routine and with data values from the

instruction call.

As you view the logic you can:

◦ Identify the instruction call whose tags are being used for data.

◦ See the logic as it executes (when online).

◦ See Parameter and Local Tag values.

◦ Change local tag and parameter values for the data instance selected.

3. To edit the logic of the Add-On Instruction, select the instruction <definition> in Data Context.

80 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 3 Using Add-On Instructions

You can't edit the instruction logic:

◦ Online

◦ When the logic is in the context of an instruction call

◦ If the instruction is source-protected

◦ If the instruction is sealed with an instruction signature

Determine if the Add-On Instruction is source protected
An Add-On Instruction may be source protected so you cannot view the logic. Follow these steps to see if an Add-On

Instruction is source protected.

To determine if an Add-On Instruction is source protected

1. Select the Add-On Instruction in the Controller Organizer.

The Add-On Instruction cannot be expanded when fully protected.

2. Look in the Quick View pane for Protection Type.

The Protection Type field indicates if the Add-On Instruction is protected by a license or a source key. If the

Protection Type attribute is not listed, then the instruction is not protected.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 81

Chapter 3 Using Add-On Instructions

Copy an Add-On Instruction
You can copy an Add-On Instruction into your project when it exists in another Logix Designer project. After you copy

the Add-On Instruction, you can use the instruction as is or rename it, modify it, and then use it in your programs.

IMPORTANT: Use caution when copying and pasting components between different versions of Logix

Designer programming application. Logix Designer application only supports pasting to the same

version or newer version of Logix Designer application. Pasting to an earlier version of Logix Designer

application is not supported. When pasting to an earlier version, the paste action may succeed, but

the results may not be as expected.

Tip: When copying and pasting Add-On Instructions, consider these guidelines:

• You cannot paste a safety Add-On Instruction into a standard routine.

• You cannot paste a safety Add-On Instruction into a safety project that has been safety-locked or

one that has a safety task signature.

• You cannot copy and paste a safety Add-On Instruction while online.

To copy an Add-On Instruction

1. Open the Logix Designer project that contains the Add-On Instruction.

2. Find the instruction in the Add-On Instructions folder.

3. Right-click the instruction and select Copy.

4. Go to the other project where you want to paste the instruction.

5. Right-click the Add-On Instructions folder and select Paste.

Store Add-On Instructions
There are two ways to store a group of Add-On Instructions together. One is to save your Add-On Instructions in a

project file. Another is to create an L5X export file, as described in Chapter 4 on page 85.

To store instructions by saving them in a project file

1. Identify the instructions to store.

2. Place them in a project file with a distinctive name, such as MyInstructions.ACD.

82 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 3 Using Add-On Instructions

3. Open other projects in additional instances of the Logix Designer application and use copy and paste or drag

and drop to move a copy of the instruction from MyInstructions.ACD to another project.

If any of these instructions reference the same Add-On Instruction or User-Defined Data Type, there is only

one shared copy in the project file. When an Add-On Instruction is copied to another project, it also copies

any instruction it references to the target project.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 83

84 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 4

Importing and Exporting Add-On Instructions

Create an export file
When you export an Add-On Instruction, the exported Add-On Instruction includes all of its parameters, local tags, and

routines. These will be imported with the Add-On Instruction automatically.

To create an export file

• Optionally, you can include any nested Add-On Instructions or User-Defined Data Types that are referenced by

the exported Add-On Instruction. Referenced Add-On Instructions and data types are exported to the L5X file

if you select Include all referenced Add-On Instructions and User-Defined Types during the export.

• Add-On Instruction definition references may also be exported when a program, routine, set of rungs, or

User-Defined Data Type is exported.

Tip: If an Add-On Instruction uses Message (MSG) instruction and InOut parameters of type

MESSAGE, you may wish to export a rung containing the Add-On Instruction to include the

MESSAGE tags. This captures the message configuration data, such as type and path.

In deciding how to manage your Add-On Instruction definitions in export files, you need to consider your goals in

storing the definitions.

If Then

You want to store many Add-On Instructions that share a set of

common Add-On Instructions or User-Defined Data Types in a

common location

Export to separate files as described in Exporting to separate

files on page 86.

You want to distribute an Add-On Instruction as one file

You want to manage each Add-On Instruction as a standalone

instruction

You want to preserve the instruction signature on your Add-On

Instruction

Export to a single file as described in Exporting to a single file

on page 87.

Tip: Add-On Instructions with instruction signatures are encrypted upon export to prevent modifications

to the export file.

Tip: A License-protected Add-On Instruction is written to the export file in an encoded format unless the

user's license contains Export permission. To export in non-encrypted text, the license must contain the

Export permission, and when saving the export file, the user must deselect the Encode Source Protected

Content option.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 85

Chapter 4 Importing and Exporting Add-On Instructions

Export to separate files
If you want to store many Add-On Instructions that share a set of common Add-On Instructions or User-Defined

Data Types in a common location, you may want to export each Add-On Instruction and User-Defined Data Types to

separate files without including references.

To export to separate files

1. In the Controller Organizer, right-click the Add-On Instruction and select Export Add-On Instruction.

2. In the Save In box, select the common location to store the L5X file.

3. In the File name box, type a name for the file.

4. Clear the Include referenced Add-On Instructions and User-Defined Types check box.

5. Click Export.

6. Follow the above steps to individually export the other shared Add-On Instructions and User-Defined Data

Types.

Using export in this way lets you manage the shared Add-On Instruction and User-Defined Data Types

independently of the Add-On Instructions that reference them. One advantage of this is the ability to update

the shared component without having to regenerate all the export files for the instructions that reference it.

That is, it is only stored in one file instead of in every file whose instruction references it. This can help with

the maintenance of the instructions as you only have to update one export file.

To use Add-On Instructions that have been exported in a separate file, without references, you must first

import any User-Defined Data Types of Add-On Instructions that the exported instruction references before

the import of the referencing instruction can be successful. To do this, work from the bottom up. Import the

lowest-level User-Defined Data Types and any User-Defined Data Types that reference them.

Then, import the lowest-level Add-On Instructions, followed by any Add-On Instructions that reference those

low-level Add-On Instructions. Once all of the items it references are in place, the import of the Add-On

Instruction will succeed.

86 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 4 Importing and Exporting Add-On Instructions

Export to a single file
If you manage each Add-On Instruction as a standalone, you might want to export the instruction and any referenced

Add-On Instructions or User-Defined Data Types into one export file. By including any referenced Add-On Instructions

or User-Defined Data Types, you also make it easier to preserve the instruction signature of an Add-On Instruction.

To export to a single file and include any referenced items

1. In the Controller Organizer, right-click the Add-On Instruction and select Export Add-On Instruction.

2. In the Save In box, select the common location to store the L5X file.

3. In the File name box, type a name for the file.

4. Select the Include referenced Add-On Instructions and User-Defined Types check box.

5. Click Export.

This exports the selected Add-On Instruction and all the referenced instructions into the same export file. You

can use this file to distribute an Add-On Instruction. When the exported Add-On Instruction is imported into

the project, the referenced instructions are imported as well in one step.

Importing an Add-On Instruction
You can import an Add-On Instruction that was exported from another Logix Designer project. When importing an

Add-On Instruction, the parameters, local tags, and routines are imported as part of the Add-On Instruction. Once the

project has the Add-On Instruction, you can use it in your programs.

Import considerations

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 87

Chapter 4 Importing and Exporting Add-On Instructions

ATTENTION: Editing an L5K or L5X File:

The EditedDate attribute of an Add-On Instruction must be updated if the Add-On Instruction is

modified by editing an L5K or L5X file. If Logix Designer application detects edits to the Add-On

Instruction, but the EditedDate attribute is the same, the Add-On Instruction will not be imported.

When importing Add-On Instructions directly or as references, consider the following guidelines:

Topic Consideration

Tag Data Imported tags that reference an Add-On Instruction in the

import file may be affected if the Add-On Instruction is not

imported as well. In this case, the imported tag’s data may be

converted if the existing Add-On Instruction’s data structure is

different and tag data may be lost.

If an existing Add-On Instruction is overwritten, project tag data

may be converted if the Add-On Instruction’s data structure is

different and tag data may be lost.

See Import configuration on page 89 for more information.

Logic Imported logic that references the Add-On Instruction in the

import file may be affected if the Add-On Instruction is not

imported. If an existing Add-On Instruction is used for the

imported logic reference and the parameter list of the Add-On

Instruction in the project is different, the project may not verify

or it may verify but not work as expected.

If an existing Add-On Instruction is overwritten, logic in the

project that references the Add-On Instruction may be affected.

The project may not verify or may verify but not work as

expected.

See Import configuration on page 89 for more information.

Add-On Instructions While Online An Add-On Instruction cannot be overwritten during import

while online with the controller, though a new Add-On

Instruction may be created while online.

License-protected Add-On Instructions A License-protected Add-On Instruction is written to the export

file in an encoded format unless the user's license contains

Export permission. To export in non-encrypted text, the

license must contain the Export permission, and when saving

the export file, the user must deselect the Encode Source

Protected Content option.

Final Name Change If the Final Name of an Add-On Instruction is modified

during import configuration, the edit date of the imported

Add-On Instruction will be updated. In addition, all logic, tags,

User-Defined Data Types, and other Add-On Instructions in the

import file that reference the Add-On Instruction will be updated

to reference the new name. As a result, the edit date of any

88 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 4 Importing and Exporting Add-On Instructions

Add-On Instruction that references the Add-On Instruction will

be updated.

Add-On Instructions that have been sealed with an instruction

signature cannot be renamed during import.

User-Defined Data Types Add-On Instructions cannot overwrite User-Defined Data Types.

Add-On Instructions and User-Defined Data Types must have

unique names.

Instruction Signature If you import an Add-On Instruction with an instruction

signature into a project where referenced Add-On Instructions

or User-Defined Data Types are not available, you may need to

remove the signature.

You can overwrite an Add-On Instruction that has an instruction

signature by importing a different Add-On Instruction with

the same name into an existing routine. Add-On Instructions

that have been sealed with an instruction signature cannot be

renamed during import.

Safety Add-On Instructions You cannot import a safety Add-On Instruction into a standard

task.

You cannot import a safety Add-On Instruction into a safety

project that has been safety-locked or one that has a safety

task signature.

You cannot import a safety Add-On Instruction while online.

Class, instruction signature, signature history, and safety

instruction signature, if it exists, remain intact when an Add-On

Instruction with an instruction signature is imported.

IMPORTANT: Importing an Add-On Instruction created in version 18 or later of Logix Designer

software into an older project that does not support Add-On Instruction signatures causes the Add-On

Instruction to lose attribute data and the instruction may no longer verify.

Import configuration
When you select a file to import, the Import Configuration dialog box lets you select how the Add-On Instruction and

referenced components are imported.

If there are no issues, you can simply click OK to complete the import.

If your Add-On Instruction collides with one already in the project, you can:

• Rename it, by typing a new, unique name in the Final Name list.

• Select Overwrite from the Operation list.

• Select Use Existing from the Operation list.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 89

Chapter 4 Importing and Exporting Add-On Instructions

Tip: You can only rename an Add-On Instruction if it has not been sealed with an instruction signature.

To rename an Add-On Instruction that has been source-protected, you need the source key or the

required license.

The Collision Details button displays the Property Compare tab, which shows the differences between the two

instructions, and the Project References tab, which shows where the existing Add-On Instruction is used.

Update an Add-On Instruction to a newer revision through import
When you need to update an instruction to a newer revision, you can import it from an L5X file or copy it from an

existing project. You must be oWine to update an Add-On Instruction.

90 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 4 Importing and Exporting Add-On Instructions

To update an Add-On Instruction to a newer revision through import

1. Right-click the Add-On Instruction folder and click Import Add-On Instruction.

2. Select the file with the Add-On Instruction and click Open.

3. Review the Import Configuration dialog box, and from the Operations list, click Overwrite.

4. Click Collision Details to see any differences in the Add-On Instructions and to view where the Add-On

Instruction is used.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 91

Chapter 4 Importing and Exporting Add-On Instructions

The Property Compare tab shows the differences between the instructions, in this case, the Revision,

Edited Date, and Software Revision.

Tip: The Compare dialog box only compares extended properties for each instruction definition,

such as description, revision, or edited date. For effective revision control, enter a detailed

revision note.

The Project References tab shows where the existing Add-On Instruction is used.

92 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Chapter 4 Importing and Exporting Add-On Instructions

IMPORTANT: Check each routine where your Add-On Instruction is used to make sure that your

existing program code will work correctly with the new version of the instruction.

For more information on updates to arguments, see Updates to arguments following parameter edits on page 38.

1. Click Close and then OK to complete the operation.

Rockwell Automation, Inc. Publication 1756-PM010M-EN-P - September 2024 93

94 Publication 1756-PM010M-EN-P - September 2024 Rockwell Automation, Inc.

Rockwell Automation Support

Use these resources to access support information.

Technical Support Center Find help with how-to videos, FAQs, chat, user forums, and product notification updates. rok.auto/support

Knowledgebase Access Knowledgebase articles. rok.auto/knowledgebase

Local Technical Support Phone Numbers Locate the telephone number for your country. rok.auto/phonesupport

Literature Library Find installation instructions, manuals, brochures, and technical data publications. rok.auto/literature

Product Compatibility and Download Center

(PCDC)

Get help determining how products interact, check features and capabilities, and find

associated firmware.

rok.auto/pcdc

Documentation feedback

Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at rok.auto/docfeedback.

Waste Electrical and Electronic Equipment (WEEE)

At the end of life, this equipment should be collected separately from any unsorted municipal waste.

Rockwell Automation maintains current product environmental information on its website at rok.auto/pec.

Rockwell Otomasyon Ticaret A.Ş. Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400 EEE Yönetmeliğine Uygundur

Publication 1756-PM010M-EN-P - September 2024
Supersedes Publication 1756-PM010L-EN-P - November 2023
Copyright © 2024, Rockwell Automation Technologies, Inc. All rights reserved. Printed in the U.S.A.

http://rok.auto/support
http://rok.auto/knowledgebase
http://rok.auto/phonesupport
http://rok.auto/literature
http://rok.auto/pcdc
http://rok.auto/docfeedback
http://rok.auto/pec

	Logix 5000 Controllers Add-On Instructions
	Important User Information
	Summary of changes
	Contents
	Preface
	Studio 5000 environment
	Additional resources
	Understanding terminology
	Legal notices

	1 - Designing Add-On Instructions
	Introduction
	About Add-On Instructions
	Components of an Add-On Instruction
	General information
	Parameters
	Local tags
	Data Type
	Logic routine
	Optional Scan Modes routines
	Instruction signature
	Signature history
	Change History
	Help

	Considerations for Add-On Instructions
	Instruction functionality
	Encapsulation
	Safety Add-On Instructions
	Instruction signature
	Safety instruction signature
	Programming languages
	Transitional instructions
	Instruction size
	Runtime editing
	Nesting Add-On Instructions
	Routines versus Add-On Instructions
	Programmatic access to data
	Unavailable instructions within Add-On Instructions
	Use GSV and SSV instructions

	Considerations when creating parameters
	Passing arguments to parameters by reference or by value
	Selecting a data type for a parameter
	Creating an alias parameter for a local tag
	Using a single dimension array as an InOut parameter
	Determining which parameters to make visible or required
	Using standard and safety tags
	Data access control

	Planning your Add-On Instruction design
	Intended behavior
	Parameters
	Naming conventions
	Source protection
	Nesting - reuse instructions
	Local tags
	Programming languages
	Scan mode routines
	Test
	Help documentation

	2 - Defining Add-On Instructions
	Create an Add-On Instruction
	Create a parameter
	Create a module reference parameter
	Create local tags
	Editing parameters and local tags
	Updates to arguments following parameter edits
	Copy parameter or local tag default values
	Creating logic for the Add-On instruction
	Execution considerations for Add-On Instructions
	Optimizing performance

	Defining operation in different scan modes
	Enabling scan modes
	Create a prescan routine
	Create a postscan routine
	Create an EnableInFalse routine

	Using the EnableIn and EnableOut parameters
	EnableIn parameter and ladder diagrams
	EnableIn parameter and function blocks
	EnableIn parameter and structured text

	Change the class of an Add-On Instruction
	Testing the Add-On Instruction
	Prepare to test an Add-On Instruction
	Test the flow
	Monitor logic with data context views
	Verifying individual scan modes

	Source protection for an Add-On Instruction
	Enable the source protection feature

	Generating an Add-On Instruction signature
	Generate, remove, or copy an instruction signature
	Create a signature history entry
	Generate a Safety Instruction Signature
	View and print the instruction signature

	Create an alarm definition
	Access attributes from Add-On Instruction alarm sets

	Creating instruction help
	Write clear descriptions
	Document an Add-On Instruction
	Project documentation

	Motor starter instruction example
	Simulation instruction example
	Ladder diagram configuration
	Function block diagram configuration
	Structured text configuration

	3 - Using Add-On Instructions
	Introduction
	Access Add-On Instructions
	Use the Add Ladder Element dialog box
	Including an Add-On Instruction in a routine
	Track an Add-On Instruction
	Reference a hardware module
	Tips for using an Add-On Instruction
	Programmatically access a parameter
	Using the Jog command in ladder diagram
	Use the Jog command in a function block diagram
	Using the Jog command in structured text

	Monitor the value of a parameter
	View logic and monitor with data context
	Determine if the Add-On Instruction is source protected
	Copy an Add-On Instruction
	Store Add-On Instructions

	4 - Importing and Exporting Add-On Instructions
	Create an export file
	Export to separate files
	Export to a single file

	Importing an Add-On Instruction
	Import considerations
	Import configuration

	Update an Add-On Instruction to a newer revision through import

	Back cover

