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Abstract A software product line (SPL) is a family of related programs of a domain.

The programs of an SPL are distinguished in terms of features, which are end-user-

visible characteristics of programs. Based on a selection of features, stakeholders can

derive tailor-made programs that satisfy functional requirements. Besides functional re-

quirements, different application scenarios raise the need for optimizing non-functional

properties of a variant. The diversity of application scenarios leads to heterogeneous

optimization goals with respect to non-functional properties (e.g., performance vs.

footprint vs. energy optimized variants). Hence, an SPL has to satisfy different and

sometimes contradicting requirements regarding non-functional properties. Usually, the

actually required non-functional properties are not known before product derivation

and can vary for each application scenario and customer. Allowing stakeholders to de-

rive optimized variants requires to measure non-functional properties after the SPL is

developed. Unfortunately, the high variability provided by SPLs complicates measure-

ment and optimization of non-functional properties due to a large variant space.

With SPL Conqueror, we provide a holistic approach to optimize non-functional

properties in SPL engineering. We show how non-functional properties can be qualita-

tively specified and quantitatively measured in the context of SPLs. Furthermore, we

discuss the variant-derivation process in SPL Conqueror that reduces the effort of com-

puting an optimal variant. We demonstrate the applicability of our approach by means

of nine case studies of a broad range of application domains (e.g., database management

and operating systems). Moreover, we show that SPL Conqueror is implementation and
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language independent by using SPLs that are implemented with different mechanisms,

such as conditional compilation and feature-oriented programming.

Keywords Software product lines · non-functional properties · feature-oriented

software development · measurement and optimization · SPL Conqueror

1 Introduction

A software product line (SPL) is a family of related program variants that share a

common code base (Clements and Northrop, 2002). Program variants of an SPL are

distinguished in terms of features, which are end-user-visible characteristics of pro-

grams (Czarnecki and Eisenecker, 2000). Features usually satisfy functional require-

ments of stakeholders. Hence, by selecting a set of features, stakeholders derive exactly

the variant that fulfills their functional requirements. Common techniques to implement

features are conditional compilation (e.g., C preprocessor using #ifdef), components,

and feature modules (Batory et al, 2004). Features are mapped to these implementa-

tion units. According to a feature selection, the corresponding implementation units

are used to generate a variant.

Besides functional requirements, stakeholders have requirements regarding non-

functional properties of a program (Chung et al, 1995). In the literature, the defini-

tion of non-functional properties (also referred to as quality attributes) is not consis-

tent (Robertson and Robertson, 1999; Glinz, 2007; Chung and do Prado Leite, 2009).

We use the definition of Robertson and Robertson (1999), who define a non-functional

property as: ”A property, or quality, that the product must have, such as an appearance,

or a speed or accuracy property.” We focus on common non-functional properties such

as performance, reliability, footprint, and so forth. When developing single programs,

non-functional requirements are identified and documented before product develop-

ment (Chung et al, 1999). During development, tools such as the non-functional re-

quirements framework (Chung et al, 1999), i* framework (Yu, 1997), and KAOS (van

Lamsweerde, 2001) help developers with design decisions that affect non-functional

properties of the final program variant. Conflicting requirements have to be resolved

during development (van Lamsweerde et al, 1998). SPLs change this picture.

In contrast to conventional software development, an SPL usually covers a broad

spectrum of application scenarios in a certain domain. A vendor develops an SPL for

an entire domain in which stakeholders can have very different non-functional require-

ments. Depending on the concrete application scenario, it is even possible that cus-

tomers have conflicting or contradicting non-functional requirements. Hence, an SPL

has to satisfy very different non-functional requirements. As running example, con-

sider an SPL of database management systems (DBMS). Stakeholders of such an SPL

(e.g., users who derive a variant of an SPL) have completely different non-functional

requirements when they use a particular variant in different application scenarios, such

as mobile devices, parallel computers, or desktop computers. For example, the foot-

print of a DBMS variant has to be minimized for an embedded system, a variant for

real-time systems must provide a deterministic response time, and a DBMS variant for

a mobile device requires minimized energy consumption.

Contrary requirements result in alternative features, which in turn result in the

ability to provide different variants that satisfy even contradicting requirements. For

instance, a DBMS SPL may provide alternative buffer manager features, e.g., a feature
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minimizes working memory consumption and another feature optimizes performance.

Hence, many non-functional requirements are defined when deriving a concrete product

during application engineering, i.e., after SPL implementation (a.k.a. domain engineer-

ing). Non-functional as well as functional requirements can often only be defined per

application or per customer, that is, at product-derivation time. As described before,

highly differing and even contradicting non-functional requirements of different con-

crete application scenarios make it necessary to postpone the definition of objective

functions (or quality goals) to the product derivation phase. Hence, often SPL vendors

do not know the concrete non-functional requirements before variant derivation (i.e.,

after development) and can only prepare an SPL for anticipated possible requirements.

As a result of the high variability of an SPL, it is usually not clear which fea-

ture selection leads to which non-functional properties. Since variants are generated

by selecting desired features, it is difficult to predict which selection of features or

which alternative feature implementations result in a program variant with, for ex-

ample, a footprint lower than 200KB and a response time of less than one second.

Again, an SPL cannot be tuned to these requirements as the requirements are usually

not known beforehand and vary (in certain bounds) depending on the application sce-

nario, environment, and customer. Therefore, SPL developers implement a spectrum

of non-functional properties with a large degree of freedom in the implementation.

During product derivation, actually important properties are determined by individual

application engineers. Hence, application engineers often face the questions: Is there

a variant that meets my functional requirements and also satisfies my non-functional

requirements? What is the best trade-off between different properties?

Answering these questions is far from trivial. An SPL usually has many variants

that satisfy the same functional requirements. To give a correct answer, an SPL’s ven-

dor would have to measure the properties for all of these candidate variants. This can

lead to a costly and time-consuming trial and error process, because even small SPLs

with only few features can have millions of possible variants. With an increasing number

of features, vendors face an exponential exposition of the variant space. Generating,

compiling, and executing each relevant program is infeasible even for medium-sized

SPLs (Krueger, 2006; Siegmund et al, 2008b). Even worse, some non-functional prop-

erties cannot be measured at all. They have to be described qualitatively on an ordinal

scale. These kinds of properties must be considered for variant derivation, too.

Besides measuring and determining non-functional properties of a variant, a cus-

tomer often wants to derive a variant that is optimized with respect to a specific

non-functional property (e.g., performance or footprint). This means also that it is not

sufficient to find a feature selection that meets the requirements, but to calculate the

optimal feature selection for a given non-functional property.

We present a holistic approach, called SPL Conqueror, that integrates all aspects

of the variant derivation process with respect to non-functional properties. We show

the big picture of optimizing non-functional properties in the area of SPLs. SPL Con-

queror supports the optimization of qualitative and quantitative properties. In previous

work, we focused only on certain aspects of the optimization process. In this paper, we

combine developed solutions to automate the whole optimization process. We subsume

and extend our previous work and evaluations (Siegmund et al, 2008b,a) and make the

following novel contributions:

1. We extend our integrated product-line model (Siegmund et al, 2008a) to assign non-

functional properties to features and implementation artifacts and to model feature
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interactions explicitly. SPL Conqueror uses this model to compute an optimized

variant based on a feature’s properties.

2. We classify non-functional properties into three classes (qualitative, feature-wise

quantifiable, and variant-wise quantifiable properties). We use these classes to select

suitable measurement and configuration techniques.

3. With SPL Conqueror, we provide a holistic approach in which user-defined metrics

are used to measure different non-functional properties. During measurement, we

address the problems of the variable code base of SPLs. Furthermore, we automate

the measurement process and enrich an integrated product-line model with the

measurement results.

4. We support derivation of variants that are optimized with respect to non-functional

properties by (i) highlighting features that improve a certain non-functional prop-

erty, (ii) predicting the value of a non-functional property for a variant based on

approximations of a feature’s properties, and (iii) automatically measuring promis-

ing variants using our automated measurement framework.

2 Problem Statement

In this section, we describe the challenges of measuring and optimizing non-functional

properties in SPLs. This is the basis for understanding the rationales behind our clas-

sification and measurement approach.

2.1 Software Product Line Scenario

In SPL development, we differentiate between domain engineering and application

engineering (Czarnecki and Eisenecker, 2000; Pohl et al, 2005) as illustrated in Figure 1.

A domain engineer analyzes the functional and non-functional requirements that are

important for an entire domain (i.e., not necessarily for a single application scenario).

This is in contrast to conventional software development in which concrete requirements

are defined and are usually known before development. These requirements address the

whole spectrum of possible program variants and may be contradicting. For example, a

DBMS SPL can contain features for in-memory and persistent storage. Although both

features have contradicting goals (i.e., performance vs. reliability), they both are useful

for specific scenarios (e.g., an in-memory variant for a web browser and a persistent

variant for an e-mail client). That is, developers implement alternative features to

satisfy different and even incompatible goals. After domain analysis, developers and

domain engineers design and implement a reference architecture for the SPL. Hence,

typically almost the whole implementation work is done in the domain engineering

phase (Clements and Northrop, 2002).

For each product, application engineering starts with the requirements analysis of

a concrete application scenario. After this second requirement engineering phase, an

application engineer (e.g., the customer) selects features to satisfy her requirements. If

requirements cannot be satisfied (e.g., because functionality is missing or non-functional

requirements cannot be fulfilled), new features or alternative implementations have to

be developed.

Developing a DBMS SPL would start by analyzing the database domain. Domain

engineers identify common and variable functionality, such as data structures, search
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Fig. 1 Domain and application engineering phases in SPL development including requirements
specificaiton (Czarnecki and Eisenecker, 2000).

indexes, encryption mechanisms, transaction support, and logging. A feature model is

used to document the features of an SPL including their dependencies (e.g., a feature

requires the presence of another feature).1

In Figure 2, we visualize the feature model of the Berkeley DB SPL. We use Berkeley

DB as a running example. Berkeley DB2 is a customizable DBMS with over 200 million

deployments (Oracle, 2006). It has optional features (e.g., Hash, Queue, Cryptography)

to be able to tailor a program variant to a customer’s requirements. One can generate

256 different variants for the Windows platform. Features are represented by boxes,

and connections between them express domain constraints. For example, a feature

connected by an empty bullet is optional (e.g., feature Hash), a feature connected with

a filled bullet is mandatory (e.g., feature B-Tree). There are also grouping relationships

in a feature model. For example, a set of features can be alternative (XOR), which

enforces a user to select exactly one feature of the alternative group. Furthermore, we

can define an OR group that allows a user to selected between at minimum one and

an arbitrary number of features.

Fig. 2 Feature model of Berkeley DB (C version).

1 Please note, a feature model looks similar to a goal model often used for requirements
engineering (van Lamsweerde, 2001). However, the concepts cannot be compared. A feature
model describes the variability of an entire SPL, i.e., all products.

2 Available at: http://www.oracle.com/technetwork/database/berkeleydb/
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2.2 Measuring Non-functional Properties

Many but not all non-functional properties can be measured. Measurement theory de-

fines multiple scales, such as ordinal, interval, and ratio (Stevens, 1946). We measure

non-functional properties that can be described with a metric scale (i.e., interval and

ratio) for which a stakeholder (i.e., a vendor, developer, domain expert, or user) can

define a suitable metric. For example, we can define footprint (using the measure-

ment of the binary size) and performance (using a benchmark that outputs performed

transactions per second) as properties to be measured for Berkeley DB. By contrast, it

would be difficult to define a metric to measure user-friendliness. Hence, we differentiate

between quantifiable and qualitative properties, which we explain in Section 3.1.

In SPL engineering, developers face the problem that requirements of concrete

customers are specified after SPL development. That is, SPL vendors have to consider

a spectrum of non-functional properties during development. Typically, it is not known

without exhaustive measurements which implications a feature selection has on certain

non-functional properties. In Figure 3, we illustrate the relationship between three

features of Berkeley DB and the four non-functional properties footprint, performance,

reliability, and security. Often, a feature affects multiple non-functional properties,

for example, feature Replication of Berkeley DB increases the binary size by 89KB.

However, this information is not known until we have actually measured it. Other

non-functional properties such as reliability cannot be measured at all. Their influence

can only be described qualitatively, rather than quantitatively. For example, we may

also need domain knowledge to somehow express the influence of a feature on such

a property. Even worse, also a certain feature combination has an influence on non-

functional properties. On the right side of Figure 3, we show program variants with

different feature combinations. The variant that includes both features Replication and

Cryptography has an unexpected behavior. We obtain a decrement in performance

although, when measuring a variant with only a single feature, there is no performance

decrement compared to the base variant. Moreover, based on the feature’s footprint, we

would expect that the variant has a size of 448KB3 rather than 480KB. The observed

difference is caused by feature interactions of both features at the source-code level.

Another example is SQLite.4 SQlite is a customizable DBMS SPL deployed on

over 500 million systems (SQLite.org, 2010). Although it targets embedded systems

and thus has a small footprint, the developers provide further configuration options to

reduce the size of the compiled DBMS. However, they can neither provide values to

which degree a deactivated feature saves binary size nor what influence a deactivation

has on other non-functional properties. The website states only: ”[..]the library size can

be less than 300KiB, depending on compiler optimization settings.”, and ”If optional

features are omitted, the size of the SQLite library can be reduced below 180KiB.”

Often, a customer needs more exact information than ”less than” or ”can be reduced

below”. Hence, to find a feature set for a specific footprint limit, a customer would need

to measure the binary sizes of many variants. Considering the fact that 88 features are

optional and can be arbitrarily configured, there are 288 different variants. Measuring

3 The sum of the footprint of features Base, Replication, and Cryptography is 448KB.
4 Available at: http://sqlite.org
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Fig. 3 Relationship between non-functional properties and feature interactions. On the left
side, we depict the non-functional properties per feature (e.g., feature Replicate has a footprint
of 89KB). On the right side, we show the measured properties of all variants that can be
generated with the three features. For footprint, we show the composition of the features’
footprints of a variant. The feature interaction introduces additional footprint and changes
the performance of variant 4. A plus symbol describes qualitatively that a feature improves a
certain property. Performance is given in transactions per second (T/s) and footprint in KB.

all variants would take longer than the time the universe exists.5 Obviously, a customer

cannot find the optimal variant with a brute force approach.

2.3 Optimizing Non-Functional Properties

Optimization means to find the best variant (feature selection) according to specific

non-functional properties. To optimize a variant with respect to non-functional proper-

ties, we can search for an optimal feature selection during application engineering. For

example, we select those features that have the most positive influence on a property.

For example, we would select the B-tree search index in Berkeley DB (cf. Figure 2)

to optimize performance. However, there are usually trade-offs between non-functional

properties. Selecting feature B-tree increases the binary size which might be not ac-

ceptable for some application scenarios. Typically, an SPL vendor has to cooperate

with customers to define an objective function over a set of non-functional properties.

An objective function expresses how to rate the diverse non-functional properties to

achieve the desired goals (van Lamsweerde et al, 1998; van Lamsweerde, 2001; Marler

and Arora, 2004).

Another problem is the computational complexity of finding an optimal vari-

ant (Floch et al, 2006). White et al (2009) found that this problem is NP-hard. Special

algorithms are needed to approximate a good solution. Although there are already

some solutions available (e.g., using filtered Cartesian flattening (White et al, 2009)

or constraint satisfaction problem solvers (Benavides et al, 2005)), they work only

for a limited class of properties (which we later describe as feature-wise quantifiable).

Other properties, such as performance and energy consumption, that can only be mea-

sured per variant are not addressed, and neither are qualitative properties (e.g., user-

friendliness). Thus, we require a combined approach of computing optimized variants

on a per-feature basis and measuring non-functional properties on a per-variant basis.

We show how our approach addresses this issue in Section 6.

5 In fact, a single measurement takes approximately five minutes. Measuring all 288 variants
would take ca. 2.9 ∗ 1021 years.
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3 Representing Non-functional Properties in Software Product Lines

We aim at optimizing non-functional properties in the product derivation phase. De-

fined by an SPL vendor or customer, the specification of desired properties must either

contain a qualitative statement regarding the range of values of a property or a metric

that we can use to measure a property. Hence, we need the information whether a

property can be described with an ordinal or a metric scale. To this end, we catego-

rize non-functional properties based on measurement theory (Stevens, 1946) to use the

proper measurement and derivation technique for a given non-functional property.

3.1 Classification of Non-functional Properties

There is a number of non-functional properties including their classification described

in the literature, for instance, McCall’s quality model (Mccall et al, 1977), Boehm’s

quality model (Boehm et al, 1978), and the ISO 9126 quality model (International

Organization for Standardization (ISO), 2001). These models have a certain purpose.

For example, McCall’s quality model bridges the gap between a customer’s quality per-

spective and a developers view on quality attributes. Hence, McCall describes factors

based on an external view of a software and quality criteria that describe the internal

view of a software. A developer can use this model to derive suitable metrics (e.g.,

error tolerance and accuracy) to improve a quality factor (reliability). Boehm’s quality

model is a hierarchical model to refine and further specify characteristics from which

a property is composed (Boehm et al, 1978). For example, maintainability is refined

to understandability which in turn is refined to conciseness. Hence, he qualitatively

defines software quality with a given set of metrics.

In contrast to the mentioned models, our purpose is to classify non-functional

properties such that we can choose proper optimization techniques based on this infor-

mation. Some non-functional properties can be described only qualitatively, whereas

other properties can be represented with metric based values, so we cannot use the

same optimization technique for all properties. For example, we cannot compute which

feature selection results in a variant with the best user-friendliness, because we usually

have no metric to obtain quantifiable measures. But, we can compute the variant with

the smallest footprint or highest performance. Hence, we classify non-functional prop-

erties with respect to our ability to measure them and which operations are valid for

the measures.6

We classify non-functional properties into three different classes: qualitative prop-

erties, feature-wise quantifiable properties, and variant-wise quantifiable properties. It

is important to note that the categorization of a specific non-functional property de-

pends on the SPL and the application scenario, and is not general. This means that

the same property can be in different classes for different SPLs or domains. Reasons

for different classifications are, for example, different view points and interpretations

of stakeholders for the same property. Also the domain of an SPL may change the

category of a property. For instance, in a web-service SPL, security may be measured

via an intrusion-detection system resulting in quantifiable measures. In another sce-

6 Measurement theory defines which operations are valid for which scale of measurement.
For example, we can only use median and percentile operations for an ordinal scale, because
we only have a totally ordered set of measures.
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nario, security can only be qualitatively specified (e.g., with weak, medium, and strong

secure), like it is done in Window 7.

Qualitative Properties. There are non-functional properties that can only be described

qualitatively using an ordinal scale (i.e., there is no metric from which we can retrieve

quantifiable measures). For example, we can define that feature Verification in Berkeley

DB improves the reliability of a DBMS, because it verifies the consistency of indexes

(cf. Figure 4). We can assign such a qualitative statement to features (i.e., ‘feature

Verification improves reliability’). Since ranking is a valid operation for values on an

ordinal scale, a domain expert can rate features according to their influence on a non-

functional property. For example, we can rate feature Verification higher than feature

Diagnostic for property reliability, because in the DBMS domain consistency of search

indexes have a crucial impact on reliability whereas diagnostic functions may only

identify some possible weak points for reliability.

Qualitative properties usually require domain knowledge. Hence, SPL vendors

should define important properties that can be used by customers as guidelines to

support feature decisions during product derivation. For example, we can assign them

certain values (e.g., Verification = 2 and Diagnostic = 1). Again, a stakeholder must

keep in mind that only certain types of calculations (median, percentile) are suitable

over ordinal numbers (Stevens, 1946). To sum up, we use qualitative properties (a) to

show them as configuration possibilities to the user (e.g., hint which features qualita-

tively improve a certain property), (b) to automatically select features with positive

influence, and (c) to avoid the selection of features with negative influence during the

computation of an optimal variant.

Common representatives of this class are: Reliability, Security, Trustability, Avail-

ability, Usability, Integrity, Completeness.

Feature-wise Quantifiable Properties. This category contains properties that can be

measured on a metric scale. An important requirement for feature-wise quantifiable

properties is that we can either measure a single feature directly or infer the results of

the measurement of a variant to single features with a user-defined metric (i.e., either

customers or SPL vendors provide suitable metrics). Hence, we can compute to which

extent a feature influences a non-functional property. Examples of this class are foot-

print of a feature (which can be measured per implementation unit (Siegmund et al,

2008b)) and maintainability (which can be measured to some degree with code metrics

such as lines of code and cyclomatic complexity (McCabe, 1976)). A feature-wise mea-

surement allows us to annotate each feature and implementation unit of an SPL with

a specific value and to compute a value for a feature selection. To compute a value for

a concrete feature selection, a stakeholder defines an aggregation function, such as ad-

dition or maximum. The aggregation function is used to aggregate the values for each

selected feature. For example, we defined for Berkeley DB maximum as aggregation

function for cyclomatic complexity and addition for footprint. This way, we are able

to compute the properties of a variant in advance only based on a configuration.

Common representatives of this class are: Footprint, Maintainability, Accura-

cy/Resolution of Data, Price of a Feature, Adaptability, Interoperability, Modularity.7

7 Maintainability can be derived from source-code metrics to some degree.
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Variant-wise Quantifiable Properties. Some properties have either no meaning for sin-

gle features or we are not able to quantify the influence of individual features on the

non-functional properties of a concrete variant. Usually, such properties emerge when

a variant is executed. They require the highest measurement effort, because we have to

generate each variant from which we want to know properties. This usually requires to

execute and to measure a variant e.g., by running benchmarks. For example, to mea-

sure performance in Berkeley DB, we use Oracle’s standard benchmark, which defines

certain types of queries. Considering the large number of possible variants, variant-

wise properties should be measured only for a predefined set of selected features. This

set may be the result of previous optimization and configuration steps based on the

properties of the previous categories. Similar to the previous class, variant properties

can be describe with a metric scale.

Common representatives of this class are: Performance, Response Time, Resource

Behavior (e.g., energy and memory consumption), Bandwidth.

3.2 Product-line Model to Reason About Feature Selections

As we explained before, a feature model describes the variability of an SPL and en-

sures that only meaningful variants can be derived (Kang et al, 1990; Czarnecki and

Eisenecker, 2000). We extended the common feature-model approach to include also

non-functional properties of features and implementation units (Siegmund et al, 2008a).

We call our extension a product-line model. In Figure 4, we show the product-line model

of Berkeley DB. In addition to the feature model of Figure 2, we model implementation

units. For instance, B-Tree fast and B-Tree small are alternative (mutually exclusive)

implementations of feature B-tree.

The product-line model supports the assignment of qualitative properties (with or-

dinal values) and feature-wise quantifiable properties (with actually measured metric

values). In Figure 4, we show the footprint of each feature that we measured for Berke-

ley DB’s features (described in Section 5). We assigned also a price for features, for

illustration. Furthermore, we defined two qualitative properties Security and Reliabil-

ity, and also highlighted that a certain feature has a positive influence on this property.

For example, feature Verification has a positive effect on reliability for a DBMS.

We distinguish between alternative features and alternative implementations. While

alternative features define different functionality, alternative implementation units im-

plement the same functionality in different ways. For instance, a user can decide either

to derive a performance-optimized Berkeley DB variant (by selection the implementa-

tion unit B-Tree fast) or a footprint-optimized (binary size) variant (by selection the

implementation unit B-Tree small). Hence, alternative implementations represent vari-

ability at the level of non-functional properties. Often, alternative implementations

are extensions for new customers who have new requirements that cannot be satis-

fied with the currently available SPL implementation. If a user is not interested in a

non-functional property, then often a standard decision is made.

As an important extension to our product-line model (Siegmund et al, 2008a),

we introduce the concept of feature interactions in our product-line model. Feature

interactions change non-functional properties of a feature depending on the presence of

a certain feature combination. We explicitly model feature interactions to consider them

for predicting a variant’s non-functional properties. For example, interactions occur

when multiple features share a common code unit or when a certain feature combination
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Fig. 4 Product-line model of Berkeley DB with assigned properties. Footprint represents
the actually measured binary size per feature. The up-arrow visualizes an improvement for a
qualitative property.

requires additional code (e.g., using nested #ifdefs). Additionally, feature interactions

can cause deadlocks and bus overloads. In Berkeley DB, there is an exhaustive use

of nesting a feature’s code in another feature’s code (e.g., to implement statistics for

the hash search index; cf. Figure 2) resulting in different binary sizes depending on a

certain feature combination. In Berkeley DB, we identified a feature interaction between

features Replication and Statistics. We measured the influence of this interaction on

footprint: A product with both features in combination has an increased binary size

of 80KB in addition to sum of the feature’s sizes. Such feature interactions occur for

many non-functional properties.

4 SPL Conqueror: A Holistic Approach for the Optimization of

Non-functional Properties

With SPL Conqueror, we propose a holistic approach to integrate measurement and

optimization of non-functional properties in the product derivation process. With holis-

tic we mean that we support the whole product derivation process starting from the

definition of desired non-functional properties, over the measurement of properties, to

the concrete feature selection and optimization by means of an objective function. We

support the different kinds of non-functional properties described in Section 3.1. A

stakeholder (i.e., an SPL vendor or domain expert) can assign properties to features

to describe the influence of a feature on a specific property. In addition, a stakeholder

can specify measurements and metrics in SPL Conqueror to measure either a single

feature (e.g., the source-code complexity) or a whole variant. Once the measurement

procedure is defined the process of selecting features and generating and measuring

features is automatically performed.

The results of measurements are stored in the SPL’s product-line model, which we

described in Section 3.2. We use this model including all assignments and measurements

during the product derivation phase to provide multiple optimization possibilities. Cus-

tomers can define non-functional constraints (e.g., a footprint limit of 200KB) as well
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as objective functions for quantifiable properties (e.g., maximize performance). If the

objective function contains a property that can only be quantified on a per-variant

basis, SPL Conqueror automatically generates and measures variants to identify the

optimal variant. In Figure 5, we provide an overview of the process of SPL Conqueror

including the following tasks (cf. Figure 5):

– (a) Assign quantifiable properties to features (by domain expert)

– (b) Measure non-functional properties per feature (by domain expert and vendor)

– (c) Define functional and non-functional requirements in application engineering

per variant (by customer)

– (d) Optionally apply additional post-derivation optimizations to a generated vari-

ant (by domain expert and SPL vendor)

In the Sections 3-6, we describe each task in detail: Analogously to the classification

of non-functional properties (which we described in 3), we have different tasks to specify

and measure non-functional properties. For qualitative properties, a domain expert

assigns non-functional properties to features (in Figure 5a). Ordinal values are stored

in the product-line model and are used in the variant derivation process.

Fig. 5 Process of SPL Conqueror including the different tasks of measurement, configuration,
and optimization.

The next step is to measure quantifiable properties per feature (in Figure 5b),

which we describe in Section 5. For this task, an SPL vendor or domain expert defines

proper measurement procedures (e.g., a source code metric or a tool which measures
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a property). These measurement procedures are plugged into SPL Conqueror to auto-

matically measure individual features and to store the values in the product-line model.

We describe the measurement of properties of all categories including its evaluation

based on multiple SPLs in Section 5.

To derive a variant (in Figure 5c), a customer defines functional and non-functional

requirements. That is, she selects features satisfying functional requirements and de-

fines constraints for non-functional properties as well as optimization goals (in terms

of objective functions). For example, if a customer wants to optimize the footprint of

Berkeley DB, she would define an objective function, such as min(Footprint). Dur-

ing the derivation process, SPL Conqueror provides for each property class a specific

configuration and optimization technique. We describe each technique including an

algorithm in Section 6 in detail.

Once SPL Conqueror has found an optimal feature set ( in Figure 5d), an SPL

vendor can apply further optimizations to this variant. In the past, we developed two

techniques that scale to large SPLs and a high number of properties considered for op-

timization (Siegmund et al, 2010a,b). We can purposefully use refactorings to alter the

structure of a generated variant in such a way that a certain non-functional property

is improved. Our second technique uses libraries of features that realize specific opti-

mizations for different non-functional properties. By linking such additional features

in a variant, we can optimize a non-functional property.

We structure the remaining article according to the tasks of SPL Conqueror. We

first describe for each class of non-functional properties our measurement techniques

and explain how we realized measurements in our case studies and which experience

we gained. We continue with a demonstration of the variant derivation process.

5 Measuring Non-functional Properties

The measurement of non-functional properties is a challenging task, because often one

cannot measure features in isolation (i.e., without the presence of and interaction with

other features), and we have to guarantee that the measured feature is actually used in

the benchmarked variant. We illustrate our approach for the measurement of reliabil-

ity, complexity, footprint, and performance. We selected these non-functional properties,

because they are commonly relevant during variant derivation, and they are represen-

tatives of quantifiable and qualitative properties. In Figure 6, we show the dialog of

SPL Conqueror with which users can define measurement procedures and metrics for a

specific property. In Figure 6 (a), a user defines measurement procedure using the fol-

lowing parameters: the program that performs the measurement, required input values,

and an access method to extract the measurement values from the program output.

Furthermore, aggregation instructions can be inserted (Figure 6b) to define how the

values obtained from individual features must be aggregated to obtain a value for an

entire variant. SPL Conqueror can export and import such definitions as XML files.

Thus, metrics and measurement specifications can be reused in different contexts and

easily exchanged.

In previous work, we evaluated the measurement process using SPL Conqueror

with nine existing SPLs that have very different characteristics to cover a broad spec-

trum of scenarios (Siegmund et al, 2011).8 In this paper, we present an approach to

8 We provide the raw material of our measurements and evaluations on our website:
http://fosd.de/SPLConqueror
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(a) (b)

Fig. 6 Creating a measurement for an feature-wise quantifiable property in SPL Conqueror.
In (a), users can define a measurement procedure. In (b), users can specify their aggregations
functions for aggregating non-functional properties of selected features.

Product Line Domain Origin Lang. Features Variants LOC

LinkedList Structures Acad. Java 18 492 2 595
Prevayler Database Ind. Java 5 24 4 030
ZipMe Compr. lib Acad. Java 8 104 4 874
PKJab Messenger Acad. Java 11 72 5 016
SensorNet Simulation Acad. C++ 26 3240 7 303
Violet UML editor Acad. Java 100 ca. 1020 19 379
Berkeley DB Database Ind. C 8 256 209 682
SQLite Database Ind. C 85 ca. 1023 305 191
Linux kernel+ OS Ind. C 25 ca. 33*106 13 005 842
+ We use only a subset of 25 features of the Linux kernel selected by a domain expert.

Table 1 Overview of the SPLs used in our evaluation. OS: Operating system; Acad.: Aca-
demic; Ind.: Industrial

compute non-functional properties of features based on a small number of generated

and measured variants. In contrast to previous work, we only give here examples for

how measurements can be achieved with SPL Conqueror rather than presenting con-

crete algorithms to compute a feature’s properties. We give an overview of the sample

SPLs, in Table 1. We selected case studies of varying sizes (2 500 to 13 million lines of

code, 5 to 100 features), and implemented with different languages (C, C++, and Java)

and different variability mechanisms (conditional compilation and feature-oriented pro-

gramming), from different domains (e.g., operating systems, database engines, end-user

applications), and from different developers (both, academic and industrial).
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Fig. 7 Definition and assignment of the qualitative property reliability in SPL Conqueror.

5.1 Reliability (Qualitative Property)

To specify a qualitative property, a domain expert inserts only the name of the property

in SPL Conqueror and selects the features and implementation units that improve or

degrade the property. Additionally, the domain expert can rank the features according

to their influence on the property.

Giving an explicit ranking of features and implementation units may not be suf-

ficient for a later (automatic) optimization. For example, Berkeley DB has multiple

features that improve reliability, but the effect can heavily differ (as we described ear-

lier). Hence, we provide the option to define a value for each feature. These values

estimate the impact of a feature on the property. Similar to a feature model, in which

features are an agreement about expected functionality between stakeholders of a do-

main, we consider non-functional properties as agreements between stakeholders about

the meaning of a property (Czarnecki et al, 2006).

In Figure 7, we show the assignment of the non-functional property reliability to

a number of features. For example, we define that feature Concur Transaction, Trans-

actions, and LoggingRecovery have a positive influence on reliability. Furthermore, we

define values for these features to express their influence (e.g., feature MemoryBudget

and LoggingRecovery have both the same value). This means, that both features have

the same positive effect. If other non-functional requirements are relevant in the opti-

mization process (e.g., a footprint constraint), we are able to decide whether to select

MemoryBudget or LoggingRecovery, depending on their measured footprint.

5.2 Measuring the Complexity of a Feature’s Source Code (Feature-wise Quantifiable

Property)

Knowing the complexity of a feature’s source code is important if an SPL vendor sells

the source code of a variant including the responsibility to maintain the variant. A

typical application scenario in which a customer is interested in the source code of
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Complexity
Feature LOC Max. Avg.

B-tree 18 223 39 3.8
Hash 115̇62 14 4.1
Queue 7 394 23 3.3
Sequence 913 12 2.8
Verify 8 924 25 4.1
Statistic 9 576 63 3.7
Cryptography 1 058 1 1
Replication 9 112 8 2.2
Diagnostic 21 342 15 2

Complexity
Feature LOC Max. Avg.

Base 2 837 25 2.8
Adaptation 7 1 1
Checksum 169 1 1
ArchiveCheck 17 4 1.4
Compress 679 30 4
CRC 34 5 1.8
Extract 293 17 3.4
GZIP 190 26 3.6

Table 2 Lines of code (LOC), maximum and average cyclomatic complexity of Berkeley DB
and ZipMe SPLs.

a variant are components (e.g., graphical components). Often, a component must be

further customized and so must the source code of a component adapted, e.g., in white

box frameworks and libraries. To make the adaptation process efficient, a customer is

interested in buying a component that is easy to understand, maintain, and customize.

Hence, we have to provide means that allow customers to derive easily maintainable

variants.

There are several metrics that measure the complexity or maintainability of source

code. We use McCabe’s cyclomatic complexity (McCabe, 1976) as an exemplary met-

ric, but other metrics could be used as well. For measurement, we used the tool Source

Monitor9 (cf. Fig. 6). For example, for SPLs implemented with feature-oriented pro-

gramming10 the source code of each feature is physically separated in different folders.

When starting the measurement, SPL Conqueror executes Source Monitor for each fea-

ture (giving the folder of the feature’s source code as input), extracts the XML output

with a previously defined XPath statement, and stores the result in the product-line

model. Either a standard aggregation function (we use the maximum) or a user-defined

aggregation function is used to determine the complexity of a feature from the complex-

ity values of the classes of the feature. As a design decision, we define the complexity

of a feature as the maximum complexity of each method that belongs to this feature.11

In Table 2, we show the results of two SPLs. We omit measurements of other SPLs

since the results are straightforward.12 A number higher than 25 for the cyclomatic

complexity is considered to be poorly written code that is difficult to understand (Mc-

Cabe, 1976). For example, feature Compress of ZipMe (implementing a hash-based

search index) appears to be very difficult to maintain according to this metric with

a measurement value of 30. Depending on the configuration, maintainability for the

variant (according to such metrics) can significantly change.

9 http://www.campwoodsw.com/sourcemonitor.html
10 The SPLs are: LinkedList, ZipMe, PKJab, SensorNetwork, and Violet.
11 Please note, that this is only an example. Such a design decision should be made by domain
experts and SPL vendors.
12 The complete measurement can be found at our website: http://fosd.de/SPLConqueror
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Berkeley DB Linux kernel ZipMe

Feature Footprint

B-tree 1 800KB
Hash 113KB
Queue 58KB
Sequence 20KB
Verify 50KB
Statistic 285KB
Cryptography 19KB
Replication 89KB
Diagnostic 191KB

Feature Footprint

SMP 709KB
INotify User 11KB
Firmware In Kernel 239KB
CHR Dev SCH 20KB
No HZ 12KB
NF Conntrack IPV6 13KB
PCNET32 34KB
Module Unload 24KB
CC Optimize For Size 1 443KB

Feature Footprint

Base 79KB
CRC 1.6KB
ArchiveCheck 0.3KB
GZIP 5.8KB
Adaptation 0.2KB
Checksum 2.4KB
Compress* 0KB
Extract 7KB

*Compress is a mandatory feature.

Table 3 Approximated footprint (binary size) of selected features of Berkeley DB, Linux
kernel, and ZipMe.

5.3 Measuring Footprint (Feature-wise Quantifiable Property)

Measuring the footprint of an application strongly depends on the used implementation

technique. There are many ways to measure the footprint of a feature. For example,

we developed in previous work (Siegmund et al, 2008b) two methods to measure the

footprint of an SPL implemented with feature-oriented programming (Batory et al,

2004). When using an implementation technique that supports separately compilable

code units, e.g., components or feature modules (Batory et al, 2004), we can easily

measure these units and store the results in the product-line model (similar to the

complexity measurement). The drawback of these measurement techniques is that they

depend on the used implementation techniques and programming language.

We need a more general technique to measure non-functional properties per feature,

since many SPLs are, for example, implemented by means of conditional compilation

(e.g., with the C preprocessor). To measure a feature’s footprint, we developed an

approach that is implementation and language independent (Siegmund et al, 2011).

The idea is to generate a set of variants that differ only in the presence of a single

feature. The delta of the measured footprint of two variants can be interpreted as the

influence of the corresponding feature on footprint. This way, we can approximate a

feature’s non-functional properties. The details of this approach are outside the scope

of this paper and can be found in (Siegmund et al, 2011).

We show the approximated footprint of selected features of Berkeley DB, Linux

kernel, and ZipMe in Table 3. We refer the interested reader to our website for the

measurements of the other SPLs. We can see that our approach is applicable to large

SPLs (e.g., Linux with a size between 11MB and 13MB), medium SPLs (e.g., Berkeley

DB’s footprint range for the static library is between 1.8MB and 2.7MB), and small

SPLs (e.g., for ZipMe13 the range within 79KB and 99KB).

5.4 Measuring Performance (Variant-wise Quantifiable Property)

Often, stakeholders want to derive a performance-optimized variant. To measure perfor-

mance, we have to execute the variant. That is, we have to configure the SPL, compile

13 Since feature Compress is a mandatory feature, it is present in every product. Hence the
size of this feature is measured together with the size of the SPL’s core feature Base.
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the variant, and finally run a benchmark. Obviously, we can only measure the perfor-

mance of the whole variant, not of individual features. Thus, we classify performance

as a variant-wise quantifiable property. Each application domain or even each program

has special demands for measurements of runtime properties, such as performance. For

instance, we measure the time for sorting of the LinkedList SPL and we use Oracle’s

standard read benchmark for Berkeley DB.

Since the measurement of variant-wise properties are the last phase in the variant-

derivation process, we compare the results of different variants according to an ob-

jective function. Depending on the feature selection, we can observe largely differing

results. We benchmarked three different variants of Berkeley DB. The variants differ

in the features B-Tree, Hash, and Cryptography. In our case, we use 40 runs for each

benchmark to reduce the effect of measurement bias. As a result, the variant with fea-

ture B-Tree index has the best performance with respect to the workload of Oracle’s

standard benchmark. In average, we measured a performance of about 110 000 T/s

(transactions per second). If we change the index to use the feature Hash, the perfor-

mance degrades to about 45 000 T/s. Finally, we also measured the influence of feature

Cryptography on performance. Not surprisingly, we found a substantial performance

degradation if data are encrypted. In this case, Berkeley DB was only able to perform

2 640 T/s which is about 43 times slower than without feature Cryptography. In SPL

Conqueror, we use the aggregated result of such a benchmark in the objective function

to identify an optimal variant.

5.5 Discussion

In this section, we provide details about effort and accuracy of our evaluations. In

particular, we show how much time we needed to perform the measurements using

SPL Conqueror compared to manual measurement (which we did in previous work).

Furthermore, we evaluate the accuracy of the measurements of feature-wise quantifiable

properties.

Time for Measurements. Compared to previous work (Siegmund et al, 2008b), SPL

Conqueror has an automated measurement process. SPL Conqueror does not require

any user interaction (e.g., the measurement process can run over night). It automat-

ically generates variants and applies predefined measurements to them, which signifi-

cantly reduces effort for measurement. Overall, the definition of appropriate measure-

ments did not require any domain knowledge.

Before measurement, a stakeholder (usually the vendor) has to define a metric or

a program that can be applied to measure a variant or piece of source code (e.g.,

as we did for Source Monitor). Additionally, a user must define how SPL Conqueror

can extract the results of the measurement. For example, we use XPath expressions to

extract results from XML files. Given such a setup, we can run SPL Conqueror without

any user interactions in our case.

Moreover, we could reuse the measurement setup (i.e., the definition how a non-

functional property can be measured) for different SPLs, which further reduces the

effort when new SPLs have to be measured. When measuring the footprint of an SPL,

the largest amount of time was dedicated to the compilation process. For example,

measuring footprint for the selected 25 features of the Linux kernel took us 4 days with

a standard desktop computer. In Table 4, we show the average time needed to measure
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SPL Measurement Time # Measured Variants Total # of Variants

LinkedList 15min 13 492
Prevayler 7min 7 24
ZipMe 8min 10 104
PKJab 7min 8 72
SensorNetwork 12 h 34 3240
Violet 24 h 2115 ca. 1020

Berkeley DB 11 h 15 256
SQLite 48 h 146 1023

Linux kernel 96 h 207 ca. 33*106

Table 4 Time spent for measuring footprint per feature of a number of variants.

a feature’s footprint for all SPLs. We required the most time for SPLs with either a

large number of features (e.g., SQLite or Violet) or a large code base (in the case of the

Linux kernel). Having a large code base increases the compilation time substantially

and having a large number of features requires to generate, compile, and measure many

variants which also increases the measurement time.

Measuring complexity took only 30 minutes for all SPLs. We had to analyze the

output format of Source Monitor and defined an appropriate XPath expression to

extract the correct value. After we did this for one SPL, we could export the definition

in SPL Conqueror and import it for all other SPLs. The definition of footprint and

performance measurements took about 5 minutes, on average, per SPL. Depending on

the existence of a makefile for building and benchmarking, we had to extract only the

binary size or benchmark results either from the command line output or extract from

a self-written tool. For example, we wrote a simple tool to compute the size of all class

files, lib files, etc. Then, we only had to specify in SPL Conqueror how to start the tool

and from which file to read the (XML-based) output. This took a minute. Again, we

could reuse the tool for all SPLs.

Accuracy of Property Prediction. When predicting non-functional properties of a vari-

ant using a feature-wise measurement, we found that predictions can be inaccurate

due to unknown feature interactions or compiler optimizations. In the following, we

discuss our observations for the property footprint and analyze how the accuracy can

be improved.

In case of Berkeley DB, we identified some minor inaccuracies for our footprint

prediction.14 On the left side of Figure 8, we depict the fault rate of our initial pre-

dictions. One can see, that we have an increasing fault rate for larger variants. The

worst fault rate is 7% and the average fault rate is 1.9%. The reason for our inaccu-

rate predictions are feature interactions at the source-code level, such as nested #ifdef

statements (Kästner et al, 2009). That is, some code fragments are only active if two

or more interacting features are used at the same time. When measuring a single fea-

ture’s footprint, we could not measure the influence of code fragements that are only

present in a product for a certain feature combination. Hence, we refined our mea-

surement approach to also measure combinations of features. The measured values are

assigned to the derivatives in our product-line model. The existing feature interactions

14 We used the Microsoft C compiler and /O2 optimization level as compiler flag.
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at source-code level were easy to identify, because we only had to look for nested code

fragments.

With the refined approach, we could significantly improve our predictions up to a

worst-case fault-rate of 0.1%. That is, we predicted the footprint of nearly every vari-

ant correctly based on a feature’s footprint. The feature-wise measurement is usually

accurate and has a very low complexity. In Figure 8, we show the improved predictions

for Berkeley DB on the right side. A complete description of the refined measurement

approach is outside the scope of this paper and given elsewhere (Siegmund et al, 2011).

Fig. 8 Fault rates of predicted footprints of all variants of Berkeley DB using two different
measurement approaches.

6 Computing an Optimal Variant

The variant-derivation process of SPL Conqueror integrates the measurement of prop-

erties, the manual selection of features by customers, and the computation of an optimal

feature selection based on a user-defined objective function. An objective function can

be defined over multiple properties of the feature-wise and variant-wise quantifiable

properties. Additionally, if a customer or a domain expert provides a mapping from a

qualitative description of a property to real numbers also qualitative properties can be

used in an objective function. However, it is the responsibility of the stakeholder who

provides such a mapping that the objective function produces meaningful results. In

this work, we do not address the problems of defining appropriate objective functions

and so refer the interested reader to according literature (Karlsson et al, 1998; Bagnall

et al, 2001; Saliu and Ruhe, 2007; Zhang et al, 2007). Hence, our work is orthogonal to

previous work in this area and we can integrate it. For simplicity, in SPL Conqueror,

we currently use a single (weighted) objective function that can be entered in a text

field.

During the variant-derivation process, we face two major challenges. First, due to

the large variant space, the computation of the optimal variant is very time consuming.

The underlying problem is NP-hard (White et al, 2009). Second, properties of the third

category (variant-wise quantifiable properties) require the generation of a variant and

usually the execution of a benchmark, which requires additionally a large amount of

time. Hence, we need a solution that measures only variants that are likely to be

the optimal variant. To this end, we propose a staged product-derivation process, as

illustrated in Figure 9. The underlying algorithm consists of four steps: (a) feature

selection to satisfy functional requirements, (b) constraining non-functional properties
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to reduce the search space to find an optimal variant, (c) computing a feature selection

to optimize non-functional properties, and (d) applying post-derivation optimizations

to a derived variant. In the following, we describe each step in detail.

(a) Feature Selection. The variant derivation starts with the selection of features ac-

cording to the functional requirements, (in Figure 9a). For example, the product-line

model of the Java version of the Berkeley DB SPL (on the left side of Figure 10) can

be used to select required features. After selecting the desired features, users can verify

the correctness of the selection (e.g., find out whether there are domain constraints

that require the selection of another feature). As a result of this stage, we can exclude

many variants that cannot satisfy functional requirements.

Fig. 9 Algorithm of SPL Conqueror’s variant-derivation process.

(b) Constraining Non-functional Properties. The aim of the second step is to exclude

as many features and feature combinations as possible from the search space of an

optimal variant. To this end, we use multiple techniques to define constraints for non-

functional properties. For qualitative properties, we highlight features that improve or

degrade the respective property. For example, we can highlight the features Replica-

tion, Verification, and Diagnostic for non-functional property reliability, since a domain

expert already associated these features with the property. To reduce the number of

variants, we exclude features from further consideration if they have a negative effect

on a property that is of interest to a customer. Although this is an approximation, it
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is often necessary to reduce the optimization complexity. Additionally, constraints can

be defined to exclude features. For example, a customer may define a constraint that

states that a DBMS variant has to be at least medium secure (e.g., like it is used in

Windows 7). Hence, we do not have to consider weaker security mechanisms anymore.

If a customer is interested in a property that is not already assigned, either the

SPL vendor or a domain expert has to perform the assignment task. Since features are

usually well documented, this task is usually fast and easy to accomplish. However,

it is important that the understanding of the nature of a non-functional property is

consistent between SPL vendor and customer. It might be the case that an assignment

of a non-functional property looks optimal for one stakeholder might not look optimal

to another stakeholder. For instance, reliability can be interpreted in different ways.

Thus, we store a description of the property to give rational about how the influence

of features is qualitatively interpreted.

In addition to qualitative properties, a customer can define constraints for quan-

tifiable properties in SPL Conqueror (top of Figure 10) to reduce the search space for

an optimal variant. Based on the stored non-functional properties of features, we can

compute in advance whether the selection (or a certain feature combination) violates

the given non-functional constraints. Then, we remove these features and feature com-

binations from the search space that would always violate the given non-functional

constraints. If many non-functional constraints are defined with contradicting goals, it

might be the case that we exclude all features or could not give any valid configuration.

If so, we can give a warning to the user that there is no product that can satisfy all

given constraints.

To give a concrete example for footprint, we measured the footprint of all Berkeley

DB features and stored the results in the product-line model. If a customer wants to

derive a variant with a footprint limit of 500KB, we can exclude features that alone

are larger than 500KB. For instance, we have to use the small B-Tree implementation

with 340KB instead of the fast implementation (with 1,800KB). Since feature B-Tree

is a mandatory feature, we have at minimum 340KB for a variant. Hence, we can

further exclude features from the search space (e.g., feature Diagnostic) that would

introduce more than 160KB, because it would always violate the given constraint. We

can also define constraints for variant-wise quantifiable properties. However, we cannot

use such constraints to exclude variants until we generate and measure a variant, which

we also do in the optimization step. We would have the effort of determining variant-

wise properties twice. Therefore, we postpone the verification of such constraints to

the optimization stage.

(d) Optimization of Non-functional Properties. The next step in the derivation process

is the computation of an optimal feature selection based on a user-defined objective

function (center of Figure 10). As an example, consider the following objective function

in which a customer of Berkeley DB is interested in deriving a variant with the best

trade-off between high performance and low footprint:

max(performance/(1000 ∗ footprint)) (1)

This objective function consists of a weighted feature-wise quantifiable property

and a variant-wise quantifiable property. According to our algorithm in Figure 9, if

the objective function contains only feature-wise quantifiable properties, we directly

compute an optimal variant using a CSP solver. Since the computation is NP-hard, we
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Fig. 10 Variant derivation in SPL Conqueror including constraint specification and optimiza-
tion.

may be able to give only an approximately good feature selection in a suitable amount of

time for a large number of features. It is also possible to optimize a qualitative property

with the same algorithm. To this end, a domain expert must provide a mapping from

qualitative assignments to numbers, which we can use in an objective function. Since

we have all features assigned with a value (zero if there is no influence), we do not have

to measure a single variant. This shows that our approach scales also for this type of

property. However, the usual approach to optimize a qualitative property would be to

(automatically) select features that are marked as positively influencing the respective

property.

Our exemplary objective function is defined additionally over a variant-wise non-

functional property. In such a case, we can first compute a set of possible optimal

variants based on the part of the objective function that contains only feature-wise

quantifiable properties. The size of this set can be defined by a customer or SPL ven-

dor to adjust the processing time. Then, we order this set of feature selections based

on the intermediate results of the objective function, and start the process of gen-

erating and measuring each remaining variant until we found the optimal variant or

the process is aborted. This process is also performed only if variant-wise quantifiable

properties exist in the objective function. Regarding scalability of the number of dif-

ferent non-functional properties in an objective function, we need only a linear number

of additional measurements with respect to the number of different properties. That

is, we already generate a variant of the SPL for a single variant-wise quantifiable prop-

erty to compute its values for the objective function. We can use the same variant to

measure all further defined non-functional properties in the objective function. Hence,

our approach scales linearly with the number of defined properties in the objective

function.

(e) Post-derivation Optimization. In a last step, we can apply further optimizations to

the generated source code of the derived variant to improve non-functional properties.
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There are lots of optimization possibilities in the literature such as instruction reorder-

ing (Tiwari et al, 1994; Li and Henkel, 2002), code transformations (Fei et al, 2007), or

special compilers (Cooper et al, 2002) that target different non-functional properties.

Also post-derivation optimizations specific to SPLs exist. Products of an SPL are

usually generated by a set of implementation units. The generated source-code can be

hard to read and to maintain and the generation process might even produce unopti-

mized code with respect to performance or footprint. To overcome these drawbacks, we

developed a technique to further optimize a derived variant by means of refactorings.

Altering the structure of a derived variant may influence certain non-functional prop-

erties. In previous work, we classified refactorings based on the influence on different

non-functional properties (Siegmund et al, 2010a). For example, we can improve the

execution time of a variant by applying the Inline Method refactoring to a method of

a variant. The refactoring replaces the method call with the body of the called method

and thus avoids the execution overhead of the method call. Depending on the applica-

tion scenario and a careful use of this refactoring, we can improve performance by up

to 50% (Götz and Pukall, 2009). Since other refactorings, such as Replace Inheritance

with Composition or Inline Class improve other non-functional properties (e.g., foot-

print or working memory consumption), we apply only refactorings to a variant that

actually optimize a desired non-functional property. A detail discussion is out of scope

of this paper (Siegmund et al, 2010a,b).

7 Related Work

Our approach is orthogonal to other requirements and quality-engineering approaches

as well as to measurement and optimization techniques. We present a holistic approach

that integrates and makes use of existing measurement and optimization techniques.

In the following, we describe how different approaches integrate with SPL Conqueror.

Quality Models. There is a number of quality models and definitions of non-

functional requirements (or properties) in the literature,see (Glinz, 2007; Chung and

do Prado Leite, 2009) for an exhaustive survey, such as McCall’s quality model (Mccall

et al, 1977), Boehm’s quality model (Boehm et al, 1978), SQUID,Software Quality in

the Development Process, (Bøegh et al, 1999), and the ISO 9126 quality model (Inter-

national Organization for Standardization (ISO), 2001). All these models can be used

by domain experts, SPL vendors, or even customers to specify non-functional proper-

ties. However, they do not consider the specifics of SPL engineering (i.e., the separation

of domain and application engineering) and of the variant-derivation process (i.e., the

large variant space). Nevertheless, we can use the modelling of non-functional prop-

erties to evaluate whether a property is a qualitative or quantitative property. These

models are orthogonal to our approach, and an integration in SPL Conqueror is promis-

ing to define proper measurements and to improve the optimization of non-functional

properties.

Prometheus is an approach to model and predict non-functional properties in prod-

ucts of SPLs (Trendowicz and Punter, 2003). Prometheus concentrates on the design

and development phase. That is, Prometheus is limited to SPLs targeting a very re-

stricted application scenario. The goal of Prometheus is to reuse measurements and

definitions of non-functional properties for other product lines. But, it is not clear
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how Prometheus can be used for SPLs that have a broad scope with contradicting re-

quirements depending on the application scenario. In contrast to Prometheus, we con-

centrate on product derivation. That is, we aim at optimizing varying non-functional

properties of an SPL’s product.

Measurement and Prediction of Non-functional Properties in SPLs. There are many

measurement techniques to predict a software’s quality attributes (see (Rana et al,

2007) for an overview and (Lincke et al, 2010) for a comparison of selected models).

However, prediction models usually target only a single property, such as reliabil-

ity (Khoshgoftaar and Seliya, 2003), and do not consider a variable set of assets as it

would be necessary in SPL engineering. We do not propose novel measurements or pre-

diction models, but aim at using existing ones in our approach. We can, for example,

integrate source code-based measurements in SPL Conqueror (e.g., no. of implemented

interfaces, no. of inner classes, etc. as used by (Pizzi et al, 2002)) and use existing

methods to aggregate and reason about the results.

Only a few approaches apply measurements of non-functional properties to SPLs.

Zubrow and Chastek proposed measures that evaluate the development effort for an

SPL (Zubrow and Chastek, 2003). Lopez-Herrejon and Apel express with their metrics

the complexity of an SPL in terms of variation points (Lopez-Herrejon and Apel, 2007)

and cohesion (Apel and Beyer, 2011). An approach close to our work is the measurement

of the binary size of an aspect-oriented SPL (Hunleth and Cytron, 2002). The authors

compiled aspects in distinct files and measured the binary size. The footprint of different

variants can then be computed. However, the approach does not consider other non-

functional properties or the computation of an optimal variant.

Sincero et al (2007, 2010) propose to estimate a product’s non-functional proper-

ties based on a knowledge base consisting of measurement results of already created

variants. Using a machine learning approach, their aim is to find a correlation between

feature selection and measurement. This way, they can infer how a feature influences

a non-functional property during configuration. In contrast to our approach, they do

not measure a feature’s non-functional properties but a quantification of how a feature

affects a property. During product derivation, they do not present an expected value

for a product’s properties, as we do, but can show with a slider how much a feature

selection improves a property such as performance or not. Furthermore, they do not

address the different types of non-functional properties (i.e., qualitative properties) nor

they define a holistic product-derivation process.

In a parallel line of research, we developed an approach to approximate non-

functional properties of features (Siegmund et al, 2011). We use the measurement

delta of two variants that differ only in the selection of a single feature. This delta is

interpreted as the influence of the according feature on the measured non-functional

property. We developed an algorithm to minimize the number of required measure-

ments and to account for feature interactions. In contrast here, we focus on the com-

plete product-derivation process rather than only the measurement of products. We do

not propose measurement techniques in this paper, but use existing techniques in SPL

Conqueror. The measurement of features is only a single step towards the derivation

of an optimal variant.

Variant Derivation Approaches. There are a number of approaches that target the de-

velopment of programs with desired non-functional properties. These approaches, such

as the non-functional requirement framework (Chung et al, 1999), i* framework (Yu,
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1997), and KAOS (van Lamsweerde, 2001), are originally intended to help developers

with design decisions to develop a software considering non-functional requirements.

In SPL engineering, the software artifacts are usually already implemented when new

customers derive a variant, but decisions regarding desired non-functional properties

can be made during the variant derivation process. Hence, these frameworks may be

suitable for an integration in SPL Conqueror, such that a goal-oriented model can be

defined for an SPL’s feature model.

The vast majority of variant derivation tools focuses on reducing the complexity of

the configuration process and supporting the user with advanced user interfaces during

feature selection (Batory, 2005; Antkiewicz and Czarnecki, 2004; Czarnecki et al, 2004;

Botterweck et al, 2007; Rabiser et al, 2007). These tools often use SAT solvers or Prolog

(e.g., in pure::variants (pure-systems GmbH, 2004)) to verify a configuration against

the constraints of the SPL.

As we explained before, we use a CSP solver to compute an optimal variant. There

are also some approaches that allow a user to optimize the feature selection with

regard to a specific non-functional property. Benavides et al. presented a technique

based on CSP solvers to find an optimal variant (Benavides et al, 2005, 2007). The

solver evaluates values attached to features in the feature model and then computes an

optimal configuration for a small number of features. Unfortunately, their studies show

that with an increasing number of features the computation time exponentially grows.

White et al (2007, 2009) extended the optimized feature selection by enabling the

definition of resource constraints. Moreover, they propose a solution based on filtered

Cartesian flattening to approximate a nearly optimal variant for even large scale feature

models. Again, we use a CSP solver in SPL Conqueror. But, both approaches might

be useful in SPL Conqueror (e.g., for selecting optimal feature sets).

Optimization Techniques for Non-functional Properties. There are a number of tech-

niques targeting the optimization of a specific non-functional property. A related ap-

proach for optimizing non-functional properties was developed in the COMQUAD

project (Göbel et al, 2004). The project focuses on techniques for tracing and adapt-

ing non-functional properties in component-based systems. Particularly, developers can

select between alternative implementations dynamically and an infrastructure weaves

these implementations as non-functional aspects in the component. This approach re-

quires a dedicated component model based on Enterprise JavaBeans, CORBA Com-

ponents, and AOP. In contrast, SPL Conqueror is not constrained to a specific im-

plementation technique or language. Furthermore, we consider the measurement of

non-functional properties which is not addressed in their work.

8 Conclusion

In this paper, we address the problems of measuring non-functional properties and find-

ing the optimal variant for given non-functional requirements. With SPL Conqueror,

we present a holistic approach for the whole variant-derivation process. It automates

the measurement of non-functional properties and derivation of optimized program

variants of a product line. We allow product-line vendors to measure the features of

a product line (e.g., footprint and performance) or to qualitatively rate features ac-

cording to their influence on a non-functional property. By providing a classification of

non-functional properties, we support different measurement techniques (feature-wise
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measurement and variant-wise measurement). We solve the problem of the large vari-

ant space and the large spectrum of non-functional properties in a product line by

providing appropriate configuration possibilities for each class of properties embedded

in a staged variant-derivation process. We discussed an evaluation for the measurement

of non-functional properties with nine case studies. The sample product lines were cho-

sen from different domains (e.g., database and UML editor). They are implemented

with different techniques and languages (C, C++, Java). This demonstrates that our

approach is language, domain, and implementation independent.

In future work, we will extend our approach to reduce the measurement effort for

variant-wise quantifiable properties, such as performance and energy consumption. We

will also work on techniques to automatically identify feature interactions at the level

of feature interactions and on an integration of other approaches for computing the

optimal feature selection in SPL Conqueror. Furthermore, an important work will be

the application of SPL Conqueror with an industrial setting including customer-defined

non-functional requirements.
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Rabiser R, Dhungana D, Grünbacher P (2007) Tool support for product derivation in

large-scale product lines: A wizard-based approach. In: Workshop on Visualisation in



30

Software Product Line Engineering (ViSPLE), IEEE Computer Society, pp 119–124

Rana ZA, Shamail S, Awais MM (2007) A survey of measurement-based software qual-

ity prediction techniques. Tech. rep., Lahore University of Management Sciences

Robertson S, Robertson J (1999) Mastering the requirements process. ACM Press

Saliu MO, Ruhe G (2007) Bi-objective release planning for evolving software systems.

In: Proceedings of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on The Foundations of Software Engineering (ESEC-FSE),

ACM Press, FSE, pp 105–114

Siegmund N, Kuhlemann M, Rosenmüller M, Kästner C, Saake G (2008a) Integrated
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Sincero J, Schröder-Preikschat W, Spinczyk O (2010) Approaching non-functional

properties of software product lines: Learning from products. In: Proceedings of

Asia-Pacific Software Engineering Conference (APSEC), IEEE Computer Society,

pp 147–155

Sincero J, Spinczyk O, Schröder-Preikschat W (2007) On the configuration of non-

functional properties in software product lines. In: Software Product Line Conference

(SPLC), Doctoral Symposium, Kindai Kagaku Sha Co. Ltd., pp 167–173

SQLite.org (2010) Press release. http://www.sqlite.org/mostdeployed.html [Accessed

at: 19th May 2011]

Stevens SS (1946) On the theory of scales of measurement. Sciences 103(2684):677–680

Tiwari V, Malik S, Wolfe A (1994) Compilation techniques for low energy: An overview.

In: Proceedings of Symposium on Low Power Electronics (ISLPED), IEEE Computer

Society, pp 38–39

Trendowicz A, Punter T (2003) Quality modeling for software product lines. In:

ECOOP Workshop on Quantitative Approaches in Object-Oriented Software En-

gineering (QAOOSE)

White J, Schmidt DC, Wuchner E, Nechypurenko A (2007) Automating product-line

variant selection for mobile devices. In: Proceedings of the International Software

Product Line Conference (SPLC), IEEE Computer Society, pp 129–140

White J, Dougherty B, Schmidt DC (2009) Selecting highly optimal architectural

feature sets with filtered cartesian flattening. Journal of Systems and Software

82(8):1268–1284



31

Yu ESK (1997) Towards modeling and reasoning support for early-phase requirements

engineering. In: Proceedings of the International Symposium on Requirements En-

gineering (RE), IEEE Computer Society, pp 226–235

Zhang Y, Harman M, Mansouri SA (2007) The multi-objective next release problem.

In: Proceedings of the Annual Conference on Genetic and Evolutionary Computation

(GECCO), ACM Press, pp 1129–1137

Zubrow D, Chastek G (2003) Measures for software product lines. Tech. Rep.

CMU/SEI-2003-TN-031, Carnegie Mellon University


