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The Bearing Correlogram: A New Method of
Analyzing Directional Spatial Autocorrelation

Extensions of nondirectional spatial autocorrelation techniques to two dimen-
sions have existed for many years, but the results are difficult to compare to
the traditional nondirectional techniques and often lack ease of interpretability.
This paper reviews the traditional one- and two-dimensional spatial autocorre-
lation methods and proposes a new directional method which is both easier to
compare to nondirectional methods and easier to interpret than previous direc-
tional methods.

The importance of recognizing and characterizing spatial patterns in data has
grown tremendously over the last decade. One aspect of spatial patterns that
has garnered much attention is spatial autocorrelation. Spatial autocorrelation
is the dependence of the values of a variable at specified geographic locations
on the values of the variable at neighboring locations. Spatially autocorrelated
data violate the assumptions underlying many standard statistical tests, and
methods of analyzing data that show spatial structuring (for example, Mantel
1967; Smouse, Long, and Sokal 1986; Clifford, Richardson, and Hémon 1989)
have been an important advance in our understanding of biological processes.
Equally as important has been the development of methods that allow us more
accurately to describe and understand the patterns of spatial autocorrelation
(Cliff and Ord 1973, 1981; Sokal and Oden 1978a, b; Upton and Fingleton
1985; Oden and Sokal 1986; Anselin 1995; Getis and Ord 1995; Ord and Getis
1995; Simon 1997).

One specific advance in spatial autocorrelation analysis is the extension of the
traditional one-dimensional techniques to two dimensions. Two-dimensional
methods allow one to analyze not simply the scale over which patterns occur,
but also the direction in which they occur. Directional spatial autocorrelation
analysis has been used in a variety of studies, including the analysis of genetic
structure (Sokal, Smouse, and Neel 1986; Sokal, Oden, and Barker 1987; Sokal,
Harding, and Oden 1989; Barbujani and Sokal 1989; Sokal and Thomson 1998),
morphological patterns (Sokal and Uytterschaut 1987; Harding, Rosing, and
Sokal 1989; Sokal and Livshits 1993; Sokal, Jantz, and Thomson 1996), and can-
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cer mortality (Rosenberg et al. 1999). In this paper, I present a new approach
to describing directional spatial autocorrelation. This new method is more com-
parable to nondirectional spatial autocorrelation and is easier to interpret than
previous methods. Before describing the new technique, I will briefly review
nondirectional and directional methods, and illustrate, compare, and contrast
the different methods using a data set of mortality due to prostate cancer in
western Europe in the 1970s. The data are from Smans, Muir, and Boyle
(1992) and have been used previously in a larger study on the spatial structuring
of cancer mortality rates (Rosenberg et al. 1999). The data consist of the gender-
specific, age-standardized (world standard) mortality rate per 100,000 per
annum for 355 registration areas in the countries making up the European Eco-
nomic Community in the 1970s (Figure 1).
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FiG. 1. Map of Prostate Cancer Mortality in the European Economic Community in the 1970s.
The data consist of the gender-specific, age-standardized (world standard) mortality rate per 100,000
per annum. Figure modified from Smans, Muir, and Boyle (1992).
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1. NONDIRECTIONAL SPATIAL AUTOCORRELATION

The degree of spatial autocorrelation is usually quantified by two common
indices, Moran’s I (a product-moment coeflicient) and Geary’s ¢ (a squared-
difference coefficient). Moran’s I is calculated as

n Z wijz,-zj
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and Geary’s ¢ is calculated as

(n— 1) T wy(Yi - Y))°
i#Ef

c = 2WZZ? ) (2)

where n is the number of localities; > is the double summation of all localities ¢
= B

from 1 ton and j from 1 to n, i # j; zzi L Y; — Y, where Y, is the value of variable Y
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the weights matrix. The two indices usually yield similar interpr;gtations; differen-
ces between them are described in Sokal (1979). For the purposes of this paper, I
will only use Moran’s 1, but all of the procedures are equally applicable to Geary’s
¢. Moran’s I generally ranges between 1 and —1, where 1 indicates a high degree
of positive spatial autocorrelation (locations that are close together have similar
values of Y) and —1 indicates a high degree of negative spatial autocorrelation
(locations that are close together have very different values of Y). The expected
value of I under the assumption of no autocorrelation is approximately zero.

To compute the autocorrelation coeflicients, one must choose a system of
assigning weights wj; to connect the localities. Rather than use a single set of
weights to calculate an overall measure of spatial autocorrelation, one normally
uses an ordered series of weights that depict different spatial relationships among
the localities. A common method is to use a series of successively farther distance
classes (for example, 0 to 10 kilometers, 10 to 20 kilometers, etc.), in which a pair
of points is given a weight of 1 if the distance between them is within the range
of the class and a zero otherwise. The autocorrelation coefficients are then cal-
culated separately for each distance class. When these coeflicients are plotted
against distance, the resulting plot is known as a spatial correlogram (Figure
2). This nondirectional correlogram indicates the degree of association between
the values of a variable at different spatial scales. The significance of individual
autocorrelation coeflicients can be determined from their moments (Cliff and
Ord 1973, 1981; Sokal and Oden 1978a, b), while that of an entire correlogram
is usually calculated using a Bonferroni procedure (Oden 1984).

Figure 2 illustrates the nondirectional spatial correlogram of male mortality
due to prostate cancer. Fifteen distance classes were created with approxi-
mately an equal number of connections (4,189) within each class; the upper
limits of the distance classes were 222, 342, 438, 525, 613, 702, 787, 872, 959,
1,061, 1,176, 1,308, 1,485, 1,747, and 2,865 kilometers. It shows a pattern typi-
cal of a gradient (Sokal 1979), with the magnitude of the autocorrelation coeffi-
cient declining linearly with distance. The value of the coefficient at the largest
distance class is often unreliable due to the large breadth of the class and/or
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F1c. 2. Nondirectional Moran’s I Spatial Correlogram for Prostate Cancer Mortality (Smans,
Muir, and Boyle 1992). Black circles are significant at P < 0.05; white circles are nonsignificant.
The upper limit of each distance class is 222, 342, 438, 525, 613, 702, 787, 872, 959, 1,061, 1,176,
1,308, 1,485, 1,747, and 2,865 km.

paucity of relevant pairs of points (depending on how the classes were
designed), and it is often ignored in analyses of correlograms. The moments
and significance of the autocorrelation coefficient for each distance class were
calculated (Cliff and Ord 1973, 1981; Sokal and Oden 1978a, b); every coeffi-
cient except that of the 7th distance class (the white circle in Figure 2) is sig-
nificantly different from zero (P < 0.05). The entire correlogram is significant
after a Bonferroni procedure to correct for multiple tests (Oden 1984).

2. DIRECTIONAL SPATIAL AUTOCORRELATION

Oden and Sokal (1986) proposed a method for extending the nondirectional
spatial autocorrelation techniques to two dimensions. Their method consists of
creating “distance/direction classes™ that not only contain information about the
distance between two points but also the direction. Each of these classes (sec-
tors) has an associated binary connection matrix. Autocorrelation coefficients
are calculated normally and the results are plotted in a diagram known as a
windrose (Figure 3). Sectors representing the same distance but different
angles are grouped together in rings called annuli. The shading of the sector
indicates the magnitude of the coefficient; the size of the sector (half or full)
indicates significance. Note that the windrose is radially symmetric.

Figure 3 shows the windrose correlogram for prostate cancer. The five annuli
represent distances up to 150, 600, 1,350, 2,400, and 3,750 kilometers respec-
tively. The classes were chosen such that there would be a minimum of 40 con-
nections within each sector (Figure 3b). Figure 3a shows the magnitude of
Moran’s I for each sector. It shows the direction of greatest positive autocorre-
lation running from the northeast to the southwest, while the direction of great-
est negative autocorrelation is perpendicular to that, running from northwest to
southeast, that is, a northwest-southeast gradient. The aberrant sector in the
outer annulus with high positive autocorrelation is due to limitations on the
geographic spread of points (it represents comparisons between the British Isles
and southern Italy only) and is equivalent to the positive trend in the final dis-
tance class of the nondirectional correlogram. Notice the first two annuli to-
gether make up roughly the first five distance classes from the nondirectional
correlogram, while the third annulus represents roughly the sixth through the
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F1G. 3. Windrose Correlogram for Prostate Cancer Mortality. The upper limits of the distance
class annuli are 150, 600, 1,350, 2,400, and 3,750 km. (A) Values of Moran’s I: white: —1.19 to
—0.35; pale gray: —0.34 to —0.00; dark gray: 0.01 to 0.40; black: 0.41 to 2.11. Full sectors are signif-
icant at P < 0.05; half sectors are nonsignificant; (B) Number of connections within each sector.

twelfth nondirectional distance classes by itself. This emphasizes the difficulty in
comparing nondirectional and windrose correlograms.

The number of actual distances (annuli) used in these correlograms tends to
be a lot less than in a simple nondirectional correlogram due to sample size
problems as one breaks the larger annuli into more and more segments (as illus-
trated in Figure 3b). This can make comparing nondirectional and windrose
correlograms difficult.

3. BEARING PROCEDURE

Because windrose correlograms may require larger sample sizes than typical
nondirectional correlograms, it may not be possible to analyze some data sets
with this method. To handle smaller sample sizes, Falsetti and Sokal (1993)
introduced a method (suggested by N. L. Oden) akin to directional spatial cor-
relograms called the bearing procedure. While not a method of spatial autocor-
relation per se, it is similar in conception and has served as a “poor-man’s”
method of determining the spatial directionality of data.

The authors created two distance matrices, one based on the values of the
variable at all points V (in their case a genetic distance matrix) and one based
on the localities D (in their case a geographic distance matrix). They multiplied
each geographic distance by the squared cosine of the difference between the
angle between the points and of a set direction (“bearing”) to obtain a new
matrix G.

Gy = Dy cosz(oc,»j -0, (3)

where G; is the i-jth element of matrix G, Dj; is the i-jth element of matrix D (the
geographic distance between localities i and j), o; is the angular direction between
points i and j (measured counterclockwise from due east) and 6 is the angular
direction of the fixed bearing. Matrix V can contain any measure of distance be-
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FI1G. 4. Bearing Plot of Prostate Cancer Mortality. Periodic function of the correlation of mor-
tality and geography against compass direction.

tween the values of the variables at each location. Typical distance measures for
data include |Y; — ;| and (Y; — Yj)2; the former was used for the prostate cancer
rates in this study.

Falsetti and Sokal then correlate G and V with a Mantel test (Mantel 1967).
This procedure was repeated for a set of bearings (36, each differing by 5
degrees) and each Mantel correlation was plotted versus the fixed bearing
angle. This plot, usually more or less sinusoidal in shape, indicates in general
terms the direction of greatest correlation (roughly the direction of least
change) and the direction of least correlation (the direction of greatest change,
that is, the most likely direction of a gradient). Although it contains much less
information than the windrose correlogram, it does indicate directionality even
with small sample sizes. As described (Falsetti and Sokal 1993), this method
does not include a significance test, although the significance of the individual
Mantel correlation coefficients (appropriately adjusted for multiple significance
tests) could be used to judge the significance of the entire procedure.

Figure 4 shows the plot of correlation versus direction for the bearing proce-
dure applied to prostate cancer. Although the sample size in this data set is
more than adequate for typical directional techniques, the bearing procedure
was performed for illustrative purposes. The Mantel correlation for thirty-six
fixed bearings, each differing by 5 degrees, were calculated; no significance test-
ing was performed. The figure shows the direction of greatest correlation to be
at about 60 degrees north of east (northeast to southwest) and the direction of
least correlation (the direction of the gradient) at about 150 degrees north of
east (northwest to southeast). This agrees with the results from the windrose
correlogram.

Simon (1997) proposed a similar, although more elegant, method for calculat-
ing the direction of maximum correlation between a variable and its spatial loca-
tions, based on projecting each location onto a fixed bearing. A summary of the
various directional spatial autocorrelation methods can be found in Table 1.

4. BEARING CORRELOGRAM

The new directional method is more similar in principle to the bearing proce-
dure than the windrose correlogram. Unlike the bearing procedure, the new
method (called a bearing correlogram) is a true spatial autocorrelation tech-
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TABLE 1
Summary of Methods for Analyzing Directional Spatial Autocorrelation
Author(s) Technique Information Provided Layout

Sokal and Oden Define classes by distance Distance and Direction Polar
and direction

Falsetti and Sokal Multiply distances by cos? Direction Cartesian
to fixed angle

Simon Project coordinates to line Direction Polar
at fixed angle

Rosenberg Weigh correlogram by Distance and Direction Polar

cos? to fixed angle

nique. The idea is to use a nonbinary weights matrix, where the weight indicates
not only the distance class involved but also the degree of alignment between
the bearing of the two points and a fixed bearing. Begin with the standard dis-
tance classes used in nondirectional correlograms. Each distance class has an
associated weight matrix. Remember that for each pair of points i and j, the
weight wy; is 1 if the distance between them falls within the distance class and
0 if the distance falls outside of the distance class. For each distance class, we
obtain a new weight matrix by multiplying each entry of the original weight
matrix by the squared cosine of the angle between points i and j and a fixed
bearing.

wé = wy cosz(oc,j - 0), 4)

where wy is the i-jth entry of the new weight matrix and the other terms are
defined as above. Because the original weights matrix was binary, this will not
affect the 0 entries within the matrix, but will “down-weight” the 1s based on their
lack of association with the direction tested. Calculate I and ¢ normally [equations
(1) and (2)] using the new weights matrix. This results in a correlogram whose
values are weighted by their association with a fixed bearing. Repeat the proce-
dure for a set of fixed bearings.

The bearing correlogram of prostate cancer used the fifteen distance classes
of the nondirectional correlogram (Figure 2) and eighteen fixed bearings, each
differing by 10 degrees. The correlograms for each fixed angle could be plotted
in the traditional manner, but for more than just a few fixed bearings, it would
be very difficult to see how changes in the bearing angle affected the spatial
autocorrelation. Figure 5 shows three (out of eighteen) correlograms of prostate
cancer mortality, each with a different fixed bearing. The significance of each
coefficient was corrected using a Bonferroni procedure by requiring a critical o
value of 0.0028 (see below). Significant coefficients are indicated by black
circles, nonsignificant coefficients by white circles. One can see that the auto-
correlation coefficient of the seventh distance class becomes significant, while
those of the tenth and eleventh distance classes become nonsignificant as the
bearing changes from 0 to 10 degrees. At 20 degrees, the twelfth distance class
also becomes nonsignificant. Note that it would be tedious to try to look at all
eighteen fixed bearing correlograms at once; subtle changes such as the ones
listed above would be difficult to track over so many diagrams.

One solution is to plot an angular correlogram instead of a distance correlo-
gram. Instead of fixing the bearing angle and plotting the value of I for each
distance class, fix the distance class and plot the value of I for each angle. This
still has the disadvantage of having multiple plots to look at, but provides differ-
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Fic. 5. Fixed Bearing Correlograms of Prostate Cancer Mortality. Each is a plot of Moran’s I ver-
sus distance for a different fixed bearing. Only 3 out of 18 are shown. Black circles are significant at
P < 0.05; white circles are nonsignificant. (A) 0 degrees (due east); (B) 10 degrees north of east; (C)
20 degrees north of east. Significance values were calculated with a Bonferroni procedure (see text).

ent, important information easily lost in a typical correlogram. Figure 6 shows
three correlograms of prostate cancer mortality, each with a different fixed dis-
tance class. Significance was calculated as in Figure 5. This allows one to see
how direction affects autocorrelation within the distance class, but does not
allow one to easily compare different distance classes. In Figure 6, one can see
that the degree of positive autocorrelation is falling as the distance class
increases. There also appears to be a shift in the direction of greatest positive
spatial autocorrelation. In the first distance class (Figure 6a) the largest coeffi-
cient appears at an angle of about 130 degrees, in the second (Figure 6b) at an
angle of about 90 degrees, and in the third (Figure 6c) at about 60 degrees.
Note that these changes are extremely subtle and would be lost among multiple
plots covering a wider range of I values. The range of values in the three corre-
lograms in Figure 6 are so narrow, one may be forced to conclude that there is
isotropy at these short distances. Only by examining the twelve angular correlo-
grams for greater distances (not shown) could one begin to understand the
directional pattern in the data. As with Figure 5, recognizing a pattern from so
many graphs is quite difficult.

To plot all of the correlograms on a single plot, wrap each angular correlo-
gram around a semicircle whose radius indicates the fixed distance class for
that correlogram (Figure 7). This resulting plot, hereby dubbed a bearing cor-
relogram, contains all of the results in a single graph. For a given autocorrela-
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Fi1c. 6. Fixed Distance Correlograms of Prostate Cancer Mortality. Each is a plot of Moran’s I
versus bearing for a different fixed distance class. Black circles are significant at P < 0.05; white
circles are nonsignificant. Only 3 out of 15 are shown. (A) 0-222 km; (B) 222-342 km; (C) 342-
438 km. Significance values were calculated with a Bonferroni procedure (see text).

tion coefficient, the distance from the origin to a ring indicates the distance
class, the radial displacement of the plot of the coefficient relative to the ring
indicates the magnitude of the coefficient, and the angle of the radius running
from the origin to the plot of the coefficient indicates the direction of the fixed
bearing. To aid in recognizing which distance class an individual coeflicient
belongs to, a line (or stem) has been drawn from the circle representing the co-
efficient to the ring representing its distance class; the length of the stem also
helps indicate the magnitude of the coefficient. Positive significance is indicated
by black circles, negative by white circles, and nonsignificance by gray circles.
Figure 7 shows the full bearing correlogram for prostate cancer mortality.
Each annulus represents a distance class equivalent to the distance classes
from the nondirectional correlogram; each coefficient within an annulus has
the same sample size (4,189) as the equivalent coeflicient from the nondirec-
tional correlogram. The direction of greatest change (a gradient) is the direction
in which the autocorrelation coefficients change from positive to negative most
rapidly. In Figure 7, this occurs in the northwest-southeast direction, seen most
notably in the sixth ring where the coefficients are nonsignificant in that direc-
tion alone. Positive spatial autocorrelation is maintained at farther distances
perpendicular to this direction, as seen in the seventh and eighth rings, indicat-
ing the direction of least change. These observations can also be made more
subtly by noticing changes in the magnitude of the coeflicient as one moves
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FIG. 7. Bearing Correlogram of Prostate Cancer Mortality. White circles are significant negative
autocorrelation (P < 0.05); black circles are significant positive autocorrelation (P < 0.05); gray
circles are nonmsignificant. Significance values were calculated with a Bonferroni procedure (see
text). The numbers below each annulus indicate the distance class. The upper limit of each annulus
is 222, 342, 438, 525, 613, 702, 787, 872, 959, 1,061, 1,176, 1,308, 1,485, 1,747, and 2,865 km.

around a ring (a procedure identical to analyzing Figure 6). For example, the
thirteenth ring shows significant negative spatial autocorrelation in all direc-
tions, but the magnitude (as indicated by the length of the stems) is much
greater in the northwest-southeast direction. As with other correlograms, the
farthest distance class (outer ring) often contains strange comparisons and may
be unreliable. The bearing correlogram could be plotted as a full circle with
radial symmetry (as are the windrose correlograms); however, the complexity
of the figure seemed to suggest that interpretation would be simpler without
cluttering the diagram with redundant information. The danger is that the cor-
relogram may be cut in a direction where something interesting is happening.
An advantage of the bearing correlograms over the windrose correlograms is
that they are directly comparable to the traditional nondirectional correlograms
because they are based on the exact same distance classes and sample sizes (the
number of pairs of points involved in the calculation of each coeflicient). The
sample size of the nondirectional and bearing correlograms was 4,189 for every
distance class. The sample size of the windrose sectors ranges from 41 to.
12,050. A disadvantage of the bearing correlogram is that we must calculate
the significance of individual coeflicients using a Bonferroni (Oden 1984) proce-
dure in order to account for the testing of multiple directions. To accomplish
this, we accept a coefficient as significant with a critical value of a/b where « is
the desired critical significance (usually 0.05) and b is the number of bearings
tested. The individual coeflicients in the bearing correlogram in Figure 7 were
tested against a critical value of 0.05/18 = 0.0028. To test the significance of the
entire correlogram, we must also take multiple distance classes into account,
using a critical value of a/bd, where d is the number of distance classes. The
bearing correlogram used as an example here is significant, even when tested
against a critical Bonferroni P-value of 0.00019. This is a more extreme test
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than is necessary in standard correlograms. In a typical nondirectional correlo-
gram with ten distance classes, the minimum P-value necessary to find the entire
correlogram significant is 0.05/10 = 0.005. In a windrose correlogram with per-
haps twenty sectors (which seems typical), the minimum P-value necessary is
0.0025. ‘
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