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Preface 

 

Preface 
This paper is the introductory chapter of a series of analyses that will result from the CLEU1 

project, a collaboration between the universities of Politecnico di Torino, Politecnico di Milano 

and Università degli Studi di Bologna. The project focuses on Cleantech, an industry sector that 

develops and deploys sustainable and environmentally friendly solutions for various target 

applications. It aims to: i) analyse the actions that are undertaken by European Cleantech firms to 

engage in transformative climate and innovation actions to align with the European Green Deal-

inspired policies; ii) examine the association of environmental innovation and the number of new 

investments made by venture capital (VC) investors in Cleantech companies on environmental 

indicators; iii) analyse the enabling factors for the development of European Cleantech firms, with 

a focus on EU-level and country-level targeted policies and regulations and the different sources 

of financing; iv) analyse the extent to which the implementation of policies and regulations affect 

both the propensity of cleantech firms to seek external equity financing and the equity offering by 

VC funds.  

This paper presents a methodology to identify Cleantech companies in Bureau van Dijk’s Orbis, a 

business database that provides detailed balance sheet information on millions of companies 

worldwide. The resulting dataset will shed a novel light on the European Cleantech sector, which 

thus far has mostly been analysed from the perspective of investment databases. The subsequent 

analyses of the CLEU project will rely heavily on the Cleantech data outlined in this paper.  

This project was funded by the European Investment Bank (EIB)’s University Research 

Sponsorship (EIBURS) programme. The EIBURS provides grants to help EU universities and 

academic research centres to develop activities in selected research areas in addition to those that 

would normally be carried out by the beneficiary and on topics of major interest to the EIB Group 

(European Investment Bank and European Investment Fund). The CLEU project is coordinated by 

the Research and Market Analysis Division of the European Investment Fund (EIF).  

Understanding the financing needs of the EU Cleantech sector is of particular importance to the 

EIF for several reasons. Firstly, Cleantech companies often require significant upfront capital 

investments due to the high costs associated with developing and scaling clean technologies. By 

understanding their financing needs, the EIF can tailor its funding programs and financial 

instruments to provide appropriate support, such as VC, loans or guarantees, to help these 

companies overcome financial barriers and access the necessary capital. 

The EIF plays a crucial role in promoting Cleantech companies and initiatives in Europe. As the 

EIB Group’s specialist provider of risk finance to benefit SMEs across Europe, the EIF provides 

financing and support to enhance access to capital for Cleantech startups and businesses. Today, 

the EIF offers various financial instruments, such as VC funds, equity investments and loan 

guarantees, specifically targeting Cleantech sectors including renewable energy, energy efficiency, 

sustainable mobility, and circular economy. Currently, the EIF manages several initiatives that aim 

to stimulate investments in EU Cleantech companies. For example, the InvestEU SME Window, 

 

1 The Cleantech industry in the European Green Deal: policy challenges and the finance landscape for SMEs: https://shorturl.at/jqZ02  

https://shorturl.at/jqZ02
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through its Climate and Environment products, contains a EUR 900m pocket to increase access 

to equity finance for innovative SMEs that develop or adopt Cleantech solutions, while the EIF’s 

RCR mandate provides EUR 300m annually, on average, over the period EUR 2022-2027, to 

European funds investing in Cleantech companies. This amount was recently topped up by 

approximately EUR 300m per annum through the Commission’s REPowerEU plan.  

By expanding our understanding of the Cleantech sector through the CLEU project, policymakers 

can further improve the design of targeted support schemes to accelerate the adoption of clean 

technologies, reduce greenhouse gas emissions, improve environmental quality, and promote 

sustainable resource utilization, thus driving the European green transition and positioning the 

EU at the forefront of the global Cleantech industry. 

We therefor invite you to delve into this introductory analysis and explore the first findings of the 

CLEU project and wish you an informative and engaging reading experience. 

 

Helmut Kraemer-Eis  

Editor 

 

 

Wouter Torfs  

Project coordinator 
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Non-technical 

Summary2 
This study provides a new perspective on European Cleantech, a sector that develops and 

deployes sustainable and environmentally friendly solutions for various target applications. It 

presents a novel solution to classify Cleantech companies based on a supervised machine learning 

(ML) algorithm applied to the extended business description of European companies, as found in 

Bureau van Dijk’s Orbis database, a comprehensive and global business database that provides 

detailed information on millions of companies worldwide.  

The process of using ML to classify Cleantech companies based on business descriptions involves 

a two-step approach. First, a small set of companies is extracted from the database and manually 

identified and labeled as Cleantech or non-Cleantech. This labeled dataset serves as a training set 

for machine learning models. By analysing the training data, the machine learning model can learn 

to assign a probability or confidence score to new, unseen company descriptions, indicating the 

likelihood of them belonging to the Cleantech category. The model essentially learns to generalise 

from the patterns it observed in the training data and to apply that knowledge to classify new 

descriptions. For example, it might learn that terms like "sustainable," "renewable," "energy 

efficiency," "waste management," "environmental conservation," or "carbon footprint reduction" 

are often indicative of Cleantech businesses. Once the model is trained and validated, it can be 

deployed to automatically classify large volumes of company descriptions, helping researchers, 

investors, or policymakers to quickly identify and analyse Cleantech companies.  

The resulting dataset will shed new light on the European Cleantech sector. Earlier studies, 

typically based on investment databases, provided only a partial perspective of the Cleantech 

phenomenon, as such databases only include Cleantech companies that have been involved in an 

investment transaction. By employing a general database of administrative balance sheet data 

with coverage of the vast majority of the population of companies, such as the one applied in this 

paper, we are able to broaden the scope of our analysis. Furthermore, matching our sample of 

Cleantech companies to a variety of other databases led to a number of new valuable insights into 

the European Cleantech sector, related to sectoral and geographic distribution, innovative 

capacity, size, VC investment activity, and others.  

Comparing our newly developed Cleantech classification to the traditional NACE sector 

classification, we found that Cleantech companies are predominantly active in the manufacturing, 

wholesale and retail trade, water supply and waste management, and construction sectors. 

Examining the spatial distribution of Cleantech in Europe, Germany, Italy, and France emerge as 

the key countries with the highest concentration of Cleantech companies. We also found 

Cleantech to be a well-established phenomenon, pre-dating to a large extent the two important 

Cleantech investment cycles, as a significant portion of the companies were established before 

 

2  This paper benefited from comments and input of Adelaide Cracco, Merilin Hörats, Helmut Kraemer-Eis, Andrea Hermida Parapar 

and Wouter Torfs. All remaining errors are our own. 
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the 2000s. We also analysed patenting activity of our Cleantech sample and found that Austria’s 

Cleantech ecosystem is the most innovation-intensive, followed by Sweden and Germany, with 

sustainable energy production, energy-efficient industrial technologies, and air/water/soil 

pollution being the prominent technological categories for patenting. Investigating a selection of 

essential financial key performance indicators (KPIs) led us to conclude that cleantech innovators 

tend to operate at a larger scale compared to their ecosystem counterparts, in terms of total 

assets, sales and employee count. Finally, concerning VC financing, Finland, Sweden, France and 

Spain emerge as the geographical areas with a high concentration of VC-backed companies
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1 | Introduction 
The European Union (EU) has long pursued a leading role in the development of policies to 

address climate change and environmental degradation. Recently, the Commission introduced 

the European Green Deal, which provides a roadmap to steer the EU towards a path of sustainable 

development. In addition to the 2050 carbon neutrality commitment, the Green Deal focuses on 

a broad range of environmental targets. 

The European Green Deal emphasises the importance of green innovations and the role of private 

companies that focus on the development of sustainability solutions (Cleantech, also commonly 

referred to as Greentech).3 Cleantech companies play a critical role in addressing environmental 

challenges such as climate change, pollution and resource depletion. Cleantech companies have 

the potential to drive economic growth by creating new jobs, generating revenue and attracting 

investment. By identifying and supporting Cleantech companies, policymakers can help foster 

environmental innovation, which is likely to generate positive economic ripple throughout the 

broader economy, boosting growth and employment. Moreover, supporting Cleantech 

companies can safeguard Europe’s competitive position on global markets, where clean 

technology is likely to gain significant importance. 

Identifying Cleantech companies is challenging, as there is no universally accepted definition of 

what constitutes Cleantech. Current definitions of Cleantech are often too generic and broad, 

leading to confusion and inconsistencies in how the industry is defined.4 Existing classification 

methods based upon industry labels (i.e., NACE codes) have proven to be inefficient in properly 

identifying Cleantech firms, as they are not able to capture the cross-cutting nature of the sector 

(Christensen & Hain, 2017; Criscuolo & Menon, 2015; Cumming et al., 2016). Other classification 

attempts, such as the EU Taxonomy, translate the EU’s climate and environmental objectives into 

criteria for specific economic activities for investment purposes. By nature, however, such 

classification approaches are too rigid and risk not considering the dynamic nature of the sector.  

This study provides an alternative solution to classify Cleantech companies by developing a 

robust and fully replicable original methodology to identify European Cleantech companies in the 

Orbis database, a large company-level database commercialised by Bureau Van Dijk, through the 

use of a supervised machine learning (ML) algorithm applied to the extended business description 

of European companies. The resulting dataset will shed new light on the European Cleantech 

sector. Earlier studies, typically based on investment databases, provided only a partial 

perspective of the Cleantech phenomenon. By using a balance sheet database, such as the one 

provided by Bureau Van Dijk, we are able to broaden the scope of our analysis and include 

Cleantech companies that have never received an equity capital injection. Furthermore, by 

matching our sample of Cleantech companies to a variety of other databases, we are able to 

 

3 The term Cleantech will be used throughout the remainder of the paper.  
4 See Annex A for a brief history of the Cleantech concept.  
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provide a number of valuable insights into the functioning of the European Cleantech sector, 

related to geographic distribution, innovative capacity, size, VC investment activity, and others.5   

In the remainder of this paper, we describe the methodology we employed to identify Cleantech 

companies in Europe and we provide preliminary descriptives about their distribution in terms of 

country, industry and foundation year, innovative performance (i.e. patents), accounting data and 

VC financing, to provide an initial overview of the Cleantech phenomenon in European countries 

using our novel database. 

 

5 See for example De Haan-Montes et al. (2023), Kraemer-Eis et al. (2022) or Pitchbook (2023). 
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2 | The identification of 

Cleantech companies  

2.1 | Three steps methodology6 

Currently, to the best of our knowledge, no comprehensive database provides a list of companies 

that fit the Cleantech definition illustrated above. Given the limitations of the existing 

classification methods (e.g., NACE industrial classification, EU Taxonomy), we developed a novel 

methodology to identify Cleantech companies, starting from the enterprise business description 

reported in the Orbis database (managed by Bureau Van Dijk).  

The method first implies to manually identify the Cleantech nature of a relatively small set of 

companies. Then, this “manually-classified” dataset is used to let a machine learn the link between 

a company description and its Cleantech status. By letting the machine learn this mapping, it is 

possible to predict the classification of non-manually classified companies. We used a series of 

machine learning methods whose prediction error is particularly small for non-manually classified 

firms. 

More specifically, the methodology to perform this task was based on three main steps: 

1. Supervised machine learning (ML) algorithm applied to each company’s extended 

business description retrieved from Orbis; 

2. Computer-aided filter of false positive Cleantech instances applied to each company 

labelled as Cleantech in the previous step; 

3. Manual checks, ecosystem segmentation, technological classification, and definition 

of the role of Cleantech companies (selected in step two) in the Cleantech ecosystem. 

We applied the methodology to the entire sample of companies available in Orbis, a dataset 

handled by Bureau Van Dijk that includes financial information on over 40 million companies 

worldwide. Orbis has been selected because of company coverage, financial data availability and 

harmonisation potential. We selected all companies that met the following criteria:  

1. Companies located in Europe; 

2. Companies which had recorded accounting data for at least one business year; 

3. Companies with an available extended business description. 

 

6 A detailed discussion on the methodology is provided in Annex B.  
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After applying the above criteria, 537,129 companies remained. The sample was reduced to 74,047 

companies after running the ML algorithm and to 23,858 companies after applying computer-

aided filters. Overall, out of 23,858 identified Cleantech companies, we manually classified 2,990 

companies as “Cleantech innovators”, focusing on clean technology development, and the 

remaining 20,868 as “Cleantech ecosystem”, referring to companies that adopt Cleantech 

technologies, sell services based on Cleantech technologies, or provide inputs for the 

development of Cleantech technologies. Figure 1 provides the graphical representation of the 

methodology used to screen Cleantech companies. 

Figure 1: Graphical representation of the methodology used to screen Cleantech 

companies 

 

We fitted a series of machine learning algorithms that we trained on our training dataset, i.e. the 

one manually created and optimally tuned via cross-validation. For this purpose, we first 

generated a series of features (or predictors) from companies’ description texts using text-mining 

techniques and then regressed these features to predict whether a company is or is not Cleantech. 

Assessing predictive performance in an out-of-sample mode, we found that the Gradient Boosting 

Machine (GBM), an ML method aggregating many classification trees, was the most predictive 

with a prediction accuracy larger than 90%. This accuracy was robust also to the presence of 

imbalanced data as in our training dataset the number of Cleantech firms is much smaller than the 

number of non-Cleantech ones. Using our optimal GBM fit, we finally predicted the Cleantech 

status completely out-of-sample over the larger dataset of 537,129 companies.   

2.2 | Computer-aided filters 

This phase aimed at reducing the number of false positives from the dataset of 74,047 companies 

obtained from the previous step, i.e. to include only Cleantech companies in the sample. We 

Supervised machine learning 

74,047 companies 

Computer-aided filters 

23,858 companies 

‘Cleantech’ 

Extraction from Orbis 

537,129 companies 

Manual classification 

2,990 companies 

‘Cleantech innovators’ 

20,868 companies 

‘Cleantech ecosystem’  
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developed a set of computer-aided filters based on keywords using functions embedded in the 

Stata software. We developed an iterative process for elaborating these filters. First, we analysed 

the Cleantech literature to define appropriate keywords about clean technologies. Second, we 

went through company descriptions to validate the keywords identified in the previous step and 

to search for new ones. As with the ML step, we prepared the descriptions to reduce errors. Thus, 

all punctuation marks were removed and the text was reduced to lowercase. In addition, we chose 

the keywords by examining the word’s root where necessary. The result of this phase was a new 

reduced sample, including 23,858 companies which were broadly defined as “Cleantech”.  

2.3 | Manual classification 

While the first step allowed for accurate filtering of non-negative Cleantech companies from the 

starting population and the second step identified Cleantech companies (i.e., only Cleantech 

companies were included in the final sample), the third and final step had a twofold objective: i) 

to assign each Cleantech company to one or more technological categories; ii) to distinguish each 

Cleantech company into “Cleantech ecosystem” (i.e., referring to companies that adopt Cleantech 

technologies, sell services based on Cleantech technologies, or provide inputs for the 

development of Cleantech technologies) and “Cleantech innovators” (i.e., referring to companies 

committed to develop clean technologies). To this aim, two research assistants manually analysed 

the companies’ business descriptions to ensure the maximum accuracy.  

2.3.1 | Classification of Cleantech companies into 

technological categories 

Each Cleantech company was classified into seven different technological categories reflecting 

the pillars of the European Green Deal and the EU Taxonomy. Some of these categories were 

further divided into sub-categories. We assigned each company to a technological category 

inspired by Haščič & Migotto (2015), in which technologies are classified according to their 

contribution to environmental sustainability. It should be noted that a company may be involved 

in one or more sub-categories. The structure of the seven technological categories (and sub-

categories) is presented below: 

1) Environmental management 

1. Air/water/soil pollution abatement/remediation 

2. Waste management 

2) Resources preservation 

1. Water conservation/availability 

2. Sustainable agri-food technologies 

3. Sustainable raw materials 
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3) Industrial energy management 

1. Sustainable energy production 

2. Sustainable fuels 

3. Energy-efficient industrial technologies 

4) Capture, storage, sequestration or disposal of GHG 

5) Sustainable modes of transport 

6) Sustainable buildings 

7) Other categories 

Environmental management 

The first category, Environmental management, includes technologies dealing with pollution 

abatement, remediation, and waste management. In particular, the sub-category 1.1 Air/water/soil 

pollution abatement/remediation includes those technologies related to the abatement and 

remediation of air, water, and soil pollution, such as soil or water purification treatments. The 

subcategory 1.2 Waste management includes companies that produce technologies for solid waste 

collection, recovery, recycling and reusing raw materials, creation of fertilisers from waste, 

technologies used for incineration, and energy recovery. 

Resources preservation 

The second category, Resource conservation, includes technologies that can contribute to the 

preservation of ecosystems. This class includes sub-category 2.1 Water conservation/availability, 

referring to technologies that deal with water conservation. Examples include water-saving 

technologies such as taps that control water flow, valves that close automatically after actuation, 

or valves that close after releasing a predetermined amount of water. The second sub-category 

2.2 Sustainable agri-food technologies concerns sustainable agri-food technologies such as 

hydroponic solutions or precision farming technologies. The third sub-category, 2.3 Sustainable 

raw materials, relates to the development of sustainable raw materials such as bioplastics or 

biodegradable raw materials obtained from natural materials such as sugar canes or potatoes 

(Ezgi Bezirhan Arikan & Havva Duygu Ozsoy, 2015). 

Industrial energy management 

The third category, Industrial energy management, includes technologies for energy production and 

energy efficiency. Specifically, the sub-category 3.1 Sustainable energy production includes clean 

energy generation technologies such as wind, solar thermal, photovoltaic, geothermal, marine, 

and hydroelectric. Other types of power generation considered were new nuclear technologies, 

fuel cells and co-generation technologies. The sub-category 3.2 Sustainable fuels includes fuels from 

renewable sources that minimise the environmental impact, e.g. fuels deriving from renewable 

biomass or from waste. Finally, the sub-category 3.3 Energy-efficient industrial technologies includes 

battery storage, capacitor and thermal storage. This class also includes technologies related to 
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superconductors, pressurised fluid, mechanical & pumped, recyclable products, and reduction of 

materials in manufacturing. 

Capture, storage, sequestration, or disposal of GHG 

The fourth category, Capture, storage, sequestration or disposal of GHG, includes technologies that 

deal with the capture of GHG (e.g. carbon dioxide) from the atmosphere and their treatment.  

Sustainable modes of transport 

The fifth category, Sustainable modes of transport, includes technologies that can decarbonise the 

transportation sectors, such as technologies for electric vehicles, fuel cell vehicles or co2 saving 

ducts. 

Sustainable buildings 

The sixth category, Sustainable buildings, includes technologies for energy efficiency management 

in buildings, both from an electricity and a thermal point of view. This category includes, among 

other things, technologies used to insulate buildings, such as expanded polystyrene. 

2.3.2 | Classification of Cleantech companies into 

ecosystem segments 

The second part of the manual classification acknowledges the complexity of the supply chain 

structure of the Cleantech ecosystem and accordingly segments the 23,858 Cleantech companies 

into:  

1. “Cleantech innovators”: these companies create (and eventually use) the clean 

technology as their core business. They are at the centre of the supply chain. 

2. “Cleantech ecosystem”: these companies adopt clean technologies, sell services based on 

clean technologies, or provide inputs for the development of clean technologies. We 

further distinguished such companies into “experimenters” and “manufacturers”, which 

support the realisation of the technology and “distributors”, “integrators”, and 

“operators”, that make the technology available in the market. 

I. Experimenters: companies involved in performing experimental tasks that can 

lead to discoveries and advances in the science of the Cleantech supply 

chain (both private and public);7 

 

7 It is possible that some experimenters also carry out manufacturing activities. 
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II. Manufacturers: companies involved in the Cleantech supply chain, dealing 

with ancillary services concerning actual innovation; in other words, they 

deal with manufacturing, fabrication, and production of necessary and 

auxiliary components or raw materials to the clean technology;8 

III. Distributors: companies that only distribute or are involved in the commercial 

provision of certain Cleantech products or technologies. Their primary role 

is to make clean technologies available on the market;9 

IV. Integrators: companies involved in the Cleantech supply chain, dealing with 

accessory services concerning actual innovation; in other words, they deal 

with engineering, installation, procurement, design, conception, and 

planning. Their prominent role is to make the clean technology ready to use 

for the adopters;10 

V. Operators: companies involved in the Cleantech supply chain that deals with 

the construction, implementation, and maintenance of facilities where clean 

technology is used; in other words, they are ancillary services for actual 

innovation. In addition, adopters who use technology as the primary tool to 

achieve their output (e.g. energy production) are also considered 

operators.11 

Although each company could fit into more than one definition, we decided to assign a unique 

class according to the company’s primary activity.  

2.4 | Limitations 

Some limitations of the applied methodology need to be taken into consideration. First, it is well 

known that AI systems are not entirely objective as they learn to make decisions based on data, 

which can include biased human decisions. For instance, during the creation of the training set, 

the human involvement in the provisioning and selection of data, the way of reasoning and the 

understanding of what constitutes Cleantech applied by the researchers involved in the process 

can make the model’s predictions susceptible to bias. In order to alleviate this type of bias, we have 

adopted one of the techniques generally suggested by the literature: the involvement of more 

 

8 They may be manufacturers of components exclusively for clean technologies, but in most cases, their components can be used 

across several sectors, including the Cleantech sector. 
9 Since commercial activities are also carried out by other actors, starting with the innovators themselves, this class includes those 

companies that only engage in commercial activities. 
10 Since integration activities are also performed by other actors, starting with the innovators themselves, this class includes 

companies that exclusively perform integration activities using clean technologies provided by other companies. 
11 Since management activities are also performed by other actors, starting with the “Cleantech innovators” themselves, this category 

includes companies that exclusively perform management activities using clean technologies provided by other companies. Some 

operators can also be considered integrators, but not vice versa. 
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researchers to compare perspectives and the application of a rigorous and systematic approach 

to address inconsistencies. However, this remains a point of attention, not only for this study, but 

for AI methods in general.  

A second bias can also be introduced by the underlying data itself. In our specific case, the 

outcome of our algorithm is based on the details provided by the companies in their business 

description. Accordingly, if a company is able to describe its business with an appropriate use of 

Cleantech-related terms, then the company is correctly depicted as Cleantech. Otherwise, if it is 

not sufficiently effective in communicating its business model, the terms related to Cleantech 

might not be mentioned, even if the company is Cleantech (false negative). Moreover, if a company 

falsely claims to run a Cleantech business model, it will be classified as such, effectively 

constituting a false positive.  This type of problem, however, cannot be addressed for the case at 

hand, as it depends on a different human bias, the one of the company team which provides 

description of the business and this is not under the control of the researchers applying the ML 

technique. 

Finally, as a procedural choice, we have decided to focus our attention toward corporates as 

isolated entitities. However, the Cleantech industry is more complex, with several 

interconnections among players. Consider, for example, the relationships that exist along the 

supply chains where players interact for the creation and delivery of products and services from 

raw materials to the end consumer. Similarly, there are Cleantech clusters that bring together 

different entities, such as businesses, research institutions, and other stakeholders to develop and 

commercialise green technologies. These clusters fall beyond the scope of this analysis, even if 

they are typically located in areas with a strong concentration of green technology companies. 

Failing to properly identify and classify them is a missing part of the exercise which deserves more 

attention in the future. Indeed, given the important role played in fostering collaboration, 

innovation, and knowledge sharing among the different stakeholders involved in the development 

and deployment of clean technologies, Cleantech clusters can help to accelerate the development 

and adoption of clean technologies, create new business opportunities, and drive economic 

growth while addressing environmental challenges. 
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3 | The mapping of Cleantech 

in Europe  

3.1 | Descriptive statistics on Cleantech 

companies 

3.1.1 | By ecosystem segment and technological category 

Our final sample comprises 23,858 companies broadly identified as Cleantech, 2,990 of which are 

Cleantech innovators (12.5%). Table 1 reports the distribution of sample companies according to 

the segmentation described in section 2.3.2 |. Within the Cleantech ecosystem group, companies 

are equally distributed among integrators (27.5%), operators (23%) and manufacturers (22.6%). The 

two remaining groups, distributors and experimenters account of 14% and 0.4%, respectively.  

Table 1: Classification of Cleantech companies into different ecosystem segments  

# companies % 

Cleantech innovators 2,990 12.5% 

Cleantech ecosystem 20,868 87.5% 

                       Experimenters 103 0.4% 

                        Manufacturers 5,380 22.6% 

                 Distributors 3,337 14.0% 

                Integrators 6,558 27.5% 

              Operators 5,490 23.0% 

Total 23,858 100% 

Source: Orbis, authors’ calculations 

The distribution of Cleantech companies in the sample according to the different segments and 

technological categories described in Section 2.3 |, is reported in Figures 2 and Figure 3.  
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Figure 2: Cleantech innovators by technological categories 

 

Source: Orbis, authors’ calculations 

The decarbonization of energy production is arguably the most significant environmental 

challenge of our time, reflected by the fact that 45% of companies fall under the Sustainable Energy 

Production sub-category (3.1) in the Cleantech innovators group. Among the other most prevalent 

sub-categories are end-of-pipe technologies for environmental management, including 

air/water/soil pollution abatement/remediation (1.1) at 14% and waste management (1.2) at 12%. 

Additionally, energy efficiency in industrial processes (3.3) represents 14% of companies, while 

sustainable buildings (6) make up 16%. The remaining categories, such as water conservation/availability 

(2.1), sustainable agri-food technologies (2.2), sustainable raw materials (2.3), sustainable fuels (3.2), and 

sustainable modes of transport (5), each account for approximately less than 5%. Lastly, the Capture, 

Storage, Sequestration, or Disposal of GHG category (4) is the least represented, constituting less than 

1% of the group. 

Figure 3 reports the distribution across technological categories for the broader sample of 

Cleantech companies (innovators and eco-system combined). When considering the broader 

sample, sub-category 3.1 (Sustainable energy production) remains one of the most represented 

technologies (26%). Compared to the group of innovators, however, the two sub-categories 

related to Environmental management are significantly better represented, accounting for 28% (1.1, 

air/water/soil pollution) and 25% (1.2, waste management), respectively.  
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Figure 3: Cleantech innovators + ecosystem by technological categories 

 

Source: Orbis, authors’ calculations 

3.1.2 | By geography 

Examining the spatial distribution of Cleantech companies provides valuable insights for 

policymakers, investors, and Cleantech firms themselves. It helps in identifying clusters, 

understanding regional advantages, evaluating policy effectiveness, identifying market gaps, and 

informing strategic planning and resource allocation decisions. 

More than half of Cleantech companies (51.18%) are located in just three countries: Germany 

(18.65%), Italy (17.85%), and France (14.33%), with the remaining companies distributed over the 

other European countries according to the data provided in Table 2.  No significant differences 

appear in the geographical distribution of Cleantech innovators and Cleantech ecosystem 

companies. Figure 4 and Figure 5 illustrate the regional distribution of Cleantech firms by NUTS-

3 area, respectively for Cleantech innovators and Cleantech ecosystem. The regional distribution 

maps reveal a dense concentration of Cleantech companies in Europe’s traditional VC hubs (see 

Kraemer-Eis et al., 2016).  
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Table 2: Distribution of Cleantech companies by country 

 
Cleantech companies Cleantech innovators Cleantech ecosystem 

# companies % # companies % # companies % 

Germany 4,444 18.7% 515 17.3% 3,929 18.9% 

Italy 4,254 17.9% 559 18.7% 3,695 17.7% 

France 3,414 14.3% 371 12.4% 3,043 14.6% 

Spain 2,072 8.7% 329 11% 1,743 8.4% 

Poland 1,443 6.1% 152 5.1% 1,291 6.2% 

Sweden 845 3.6% 141 4.7% 704 3.4% 

Czech Republic 743 3.1% 99 3.3% 644 3.1% 

Belgium 706 2.9% 101 3.4% 605 2.9% 

Norway 677 2.8% 79 2.7% 598 2.9% 

Austria 598 2.5% 85 2.9% 513 2.5% 

Romania 550 2.3% 47 1.6% 503 2.4% 

Finland 500 2.1% 71 2.4% 429 2.1% 

Portugal 456 1.9% 47 1.6% 409 2% 

Hungary 413 1.7% 30 1% 383 1.8% 

Netherlands 387 1.6% 66 2.2% 321 1.5% 

Denmark 334 1.4% 51 1.7% 283 1.4% 

Bulgaria 312 1.3% 27 0.9% 285 1.4% 

Slovakia 267 1.1% 29 1% 238 1.1% 

Serbia 239 1% 18 0.6% 221 1.1% 

Greece 226 0.9% 41 1.4% 185 0.9% 

Croatia 192 0.8% 24 0.8% 168 0.8% 

Lithuania 153 0.6% 18 0.6% 135 0.7% 

Slovenia 151 0.6% 24 0.8% 127 0.6% 

Latvia 112 0.5% 5 0.2% 107 0.5% 

Estonia 83 0.4% 13 0.4% 70 0.3% 

United Kingdom 70 0.3% 22 0.7% 48 0.2% 

Luxembourg 45 0.2% 7 0.2% 38 0.2% 

North Macedonia 43 0.2% 2 0.1% 41 0.2% 

Switzerland 41 0.2% 3 0.1% 38 0.18% 

Iceland 15 0.06% 1 0.03% 14 0.07% 

Malta 13 0.05% 3 0.1% 10 0.05% 

Turkey 13 0.05% 3 0.1% 10 0.05% 

Montenegro 11 0.05% 0 0% 11 0.05% 

Ireland 5 0.02% 1 0.03% 4 0.02% 

Cyprus 1 0.00% 1 0.03% 0 0% 

Total 23,828 100% 2,985 100% 20,843 100% 

Source: Orbis, authors’ calculations 
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Figure 4: Geographic distribution of Cleantech innovators by NUTS-3 area 
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Source: Orbis, authors’ calculations 
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Figure 5: Geographic distribution of Cleantech ecosystem companies by NUTS-3 area 
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Source: Orbis, authors’ calculations 

To assess the prevalence of regional technological specialisation patterns, the Balassa-index was 

calculated for each NUTS3-region (Figure 6 for innovators and Figure 7 for ecosystem companies). 

The Balassa-index is an empirical proxy for regional specialisation and is calculated for each 

region, 𝑟0 , and technology, j, as follows:   
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The index exceeds one if the extend of regional concentration for a specific technology exceeds 

the concentration of the sample average, and thereby is assumed to reveal a region’s relative 

technological strength (Soete, 1987), and hence, indicate a comparative production advantage for 

a specific clean technology. In this context, Figure 6 and Figure 7 illustrate for each NUTS-3 region 

the technology category with the highest index value, and therefor, the technology category in 

which the region has a revealed comparative advantage. 

Figure 6: Regional specialisation patterns of Cleantech innovators by technological category 

and NUTS-3 area 
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Note: The map depicts the technology category with the highest Bassala index value among all technology categories within a given 

region.  

Source: Orbis, authors’ calculations 
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Figure 7: Regional specialisation patterns of Cleantech ecosystem companies by technological 

category and NUTS-3 area* 
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* The map depicts the technology category with the highest Bassala-index among all technology categories within a given region.  

Source: Orbis, authors’ calculations 

3.1.3 | By sector 

This section illustrates the cross-sectoral nature of Cleantech, by describing the distribution of 

companies over the different NACE12 rev.2 section. Cleantech companies are indeed active across 

a wide range of sectors and some interesting conclusions regarding sectoral concentration 

emerge.  

When considering the entire sample (Table 3, columns 2 and 3), the majority of Cleantech 

companies (innovators + ecosystem) operate in the manufacturing (C), wholesale and retail trade 

(G), water supply and waste management (E), and construction (F) sectors. Focusing only on 

Cleantech innovators (Table 3, columns 4 and 5), there is a significantly stronger concentration in 

manufacturing (42.91%), which indicates that Cleantech innovation occurs predominantly in 

hardware-intensive sectors. Examining in closer detail the sectoral distribution of Cleantech 

innovators, by looking at 4-digit NACE codes, we observe some narrow sectors with a relatively 

 

12 The NACE classification (Statistical Classification of Economic Activities in the European Community) is a sectoral classification 

system used to categorise economic activities and industries within the EU. 
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dense concentration of Cleantech innovators. For example, 8.52% of Cleantech innovators 

operate in 35.11 NACE code (i.e. Production of electricity), while another 6.2% belong to the 71.12 

NACE code (Engineering activities and related technical consultancy). Other NACE 4-digit code 

with a significant overrepresentation of Cleantech innovators are 46.69 (Wholesale of other 

machinery and equipment), 27.11 (Manufacture of electric motors, generators and transformers), 

43.21 (Electrical installation) and 28.29 (Manufacturing of other general-purpose machinery 

n.e.c.), which all represent around 2.5% of the Cleantech innovators sample. 

Table 3: Distribution of Cleantech companies by industry (NACE rev. 2) 

NACE rev.2 section 
Cleantech companies Cleantech innovators Cleantech ecosystem 

# companies % # companies % # companies % 

A - Agriculture, forestry and fishing 171 0.7% 17 0.6% 154 0.7% 

B - Mining and quarrying 171 0.7% 9 0.3% 162 0.8% 

C - Manufacturing 5,686 23.9% 1,281 42.9% 4,405 21.1% 

D - Electricity, gas, steam and air 

conditioning supply 
1,917 8% 318 10.7% 1,599 7.7% 

E - Water supply; sewerage, waste 

management and remediation activities 
3,759 15.8% 140 4.7% 3,619 17.4% 

F - Construction 3,376 14.2% 265 8.9% 3,111 14.9% 

G - Wholesale and retail trade; repair of 

motor vehicles and motorcycles 
4,792 20.1% 369 12.4% 4,423 21.2% 

H - Transportation and storage 344 1.4% 18 0.6% 326 1.6% 

I - Accommodation and food service 

activities 
84 0.4% 9 0.3% 75 0.4% 

J - Information and communication 206 0.9% 28 0.9% 178 0.9% 

K - Financial and insurance activities 390 1.6% 75 2.5% 315 1.5% 

L - Real estate activities 280 1.2% 29 1% 251 1.2% 

M - Professional, scientific and technical 

activities 
1,446 6% 359 12% 1,087 5.2% 

N - Administrative and support service 

activities 
968 4% 48 1.6% 920 4.4% 

O - Public administration and defence; 

compulsory social security 
21 0.1% 2 0.1% 19 0.1% 

P - Education 28 0.1% 0 0% 28 0.1% 

Q - Human health and social work 

activities 
71 0.3% 5 0.2% 66 0.3% 

R - Arts, entertainment and recreation 37 0.2% 3 0.1% 34 0.2% 

S - Other service activities 81 0.3% 10 0.3% 71 0.3% 

Total 23,828 100% 2,985 100% 20,843 100% 

Source: Orbis, authors’ calculations 
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Table 4. Distribution of Cleantech companies (innovators + ecosystem) by industry (NACE rev. 2) and technological categories 
 Technological categories* 

NACE rev.2 Section 1 2 3 4 5 6 7 

A - Agriculture, forestry and fishing 73 0.6% 69 2.3% 73 0.6% 0 0.0% 0 0.0% 11 0.5% 7 1.0% 

B - Mining and quarrying 84 0.7% 25 0.8% 67 0.6% 5 29.4% 0 0.0% 9 0.4% 12 1.7% 

C - Manufacturing 2416 19.4% 712 23.3% 2696 23.0% 0 0.0% 129 47.4% 838 35.9% 150 21.8% 

D - Electricity, gas, steam and air conditioning supply 295 2.4% 118 3.9% 1754 14.9% 0 0.0% 8 2.9% 29 1.2% 98 14.3% 

E - Water supply; sewerage, waste management and remediation activities 3614 29% 418 13.7% 1708 14.5% 0 0.0% 1 0.4% 19 0.8% 8 1.2% 

F - Construction 1281 10.3% 669 21.9% 1590 13.5% 1 5.9% 19 7.0% 455 19.5% 63 9.2% 

G - Wholesale and retail trade; repair of motor vehicles and motorcycles 2680 21.5% 469 15.3% 1936 16.5% 1 5.9% 43 15.8% 722 30.9% 226 32.9% 

H - Transportation and storage 199 1.6% 34 1.1% 145 1.2% 0 0.0% 11 4.0% 20 0.9% 23 3.3% 

I - Accommodation and food service activities 39 0.3% 15 0.5% 34 0.3% 0 0.0% 1 0.4% 15 0.6% 1 0.1% 

J - Information and communication 92 0.7% 18 0.6% 107 0.9% 0 0.0% 9 3.3% 27 1.2% 9 1.3% 

K - Financial and insurance activities 156 1.2% 34 1.1% 233 2.0% 3 17.6% 7 2.6% 27 1.2% 17 2.5% 

L - Real estate activities 141 1.1% 34 1.1% 148 1.3% 0 0.0% 2 0.7% 25 1.1% 11 1.6% 

M - Professional, scientific and technical activities 601 4.8% 187 6.1% 888 7.6% 4 23.5% 34 12.5% 89 3.8% 42 6.1% 

N - Administrative and support service activities 662 5.3% 212 6.9% 259 2.2% 2 11.8% 6 2.2% 27 1.2% 12 1.7% 

O - Public administration and defence; compulsory social security 9 0.1% 1 0.0% 6 0.1% 1 5.9% 0 0.0% 3 0.1% 2 0.3% 

P - Education 14 0.1% 5 0.2% 9 0.1% 0 0.0% 0 0.0% 6 0.3% 2 0.3% 

Q - Human health and social work activities 40 0.3% 14 0.5% 29 0.2% 0 0.0% 1 0.4% 4 0.2% 2 0.3% 

R - Arts, entertainment and recreation 26 0.2% 5 0.2% 12 0.1% 0 0.0% 0 0.0% 3 0.1% 0 0.0% 

S - Other service activities 37 0.3% 17 0.6% 48 0.4% 0 0.0% 1 0.4% 5 0.2% 2 0.3% 
 12,459  3,056  11,742  17  272  2,334  687  

*1. Environmental management, 2. Resources preservation, 3. Industrial energy management, 4. Capture, storage, sequestration or disposal of GHG, 5. Sustainable modes of transport, 6. Sustainable 

buildings, 7. Other categories 

Source: Orbis, authors’ calculations 
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Table 4 illustrates the sectoral distribution (according to the NACE rev.2 classification) of the 

entire sample of Cleantech companies for the technological categories defined in section 2.3.1 |. 

Companies active in our largest category, Environmental management (category 1) are 

predominantly active in the NACE sector water supply and waste management (29%), wholesale 

(21.5%) and manufacturing (19.4%). Concerning Cleantech companies active in Industrial energy 

management (category 3), the second largest technological category, the NACE sector 

manufacturing accounts for over 1 in 5 companies (22.96%), while electricity, gas, steam and air 

conditioning supply, water supply and waste management, construction and wholesale each 

account for around 15% of industrial energy management companies. Finally, companies active in 

Resources preservation (category 2), the third largest technological category, operate mostly in 

manufacturing (23.3%), construction (21.9%), wholesale (15.3%) and water supply and waste 

management (13.7%). 

3.1.4 | By year of incorporation 

While interest in Cleantech has experienced a strong surge in recent years, driven , among other 

things, by evolutions on the regulatory front, environmental technology is not a new phenomenon 

and predates the current green regulatory wave. This is confirmed by our data, as illustrated in 

Table 4, which illustrates the distribution of Cleantech companies by year of incorporation and 

shows that over half (63.77%) of the companies were founded in the previous decennium, prior to 

the first Cleantech investment wave.  

Noteworthy is the gradual decline in the number of Cleantech companies after 2010. One 

potential explanation for initial downward trend is the global economic downturn that occurred 

during this period, commonly referred to as the "cleantech crash” when the aftermath of the Great 

Financial Crisis led to reduced investment and funding opportunities for innovative companies. 

These challenges were further aggravated by the sovereign debt crisis, as public budgetary 

constraints led to reduced incentives and subsidies for green technology, creating a less favorable 

environment for Cleantech to flourish. Similarly, the table shows a drop from 2016 onwords 

explained by the methodological approach adopted for constructing the initial sampling based 

on censoring of the most recent companies. This choice was driven by the need to track the 

evolution of these companies over time for a significant number of years. 

 

Table 4: Distribution of Cleantech companies by year of incorporation 

Year of incorporation 
Cleantech companies Cleantech innovators Cleantech ecosystem 

# companies % # companies % # companies % 

Before 1980 4,326 18.1% 529 17.7% 3,797 18.2% 

1981-1985 1,348 5.7% 143 4.8% 1,205 5.8% 

1986-1990 2,308 9.7% 257 8.6% 2,051 9.8% 

1991-1995 3,803 16% 350 11.7% 3,453 16.6% 

1996-2000 3,409 14.3% 416 13.9% 2,993 14.4% 

2001-2005 3,277 13.8% 433 14.5% 2,844 13.6% 

2006-2010 3,320 13.9% 560 18.8% 2,760 13.2% 

2011-2015 1,669 7% 250 8.4% 1,419 6.8% 

2016 onwards 368 1.5% 47 1.6% 321 1.5% 

Total 23,828 100% 2,985 100% 20,843 100% 

Source: Orbis, authors’ calculations 
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By plotting the evolution of Cleantech start-ups by technological category, Figure 8 reveals 

diverging trends in the emergence (and decline) of specific green technologies. Interestingly, the 

declining trend in the number of Cleantech firm births initiated already prior to 2010 in all but two 

categories: sustainable energy production (3.1) and sustainable fuels (3.2), as both sectors flourished 

beyond 2010, although their exponential growth was eventually countered by the financial crisis 

as well.  

Figure 8: Evolution of Cleantech start-ups by technological category (1981-2015) 

  

Source: Orbis, authors’ calculations 

3.2 | Patent data 

Patents play a crucial role in analysing the innovative potential of Cleantech companies, providing 

valuable insights into their technological advancements and competitive advantage. Examining 

patterns in Cleantech patenting activity allows to assess their capacity to develop novel solutions, 

thereby addressing environmental challenges and driving sustainable practices.  

Starting from the identified sample of Cleantech companies, we matched firm-level data with 

patent data in the Orbis Intellectual Property (Orbis IP) database by using the Bureau van Dijk 
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company identifiers. We selected all patent applications filed by our sample companies at the 

European Patent Office (EPO) to ensure that the data is comparable across countries. Table 5 

illustrates the distribution of EPO patenting Cleantech companies for Cleantech innovators and 

ecosystem companies. Just over 2,700 companies (11.3% of the sample) filed at least one EPO 

patent. Cleantech innovators appear to patent inventions at a significantly higher rate than the 

ecosystem companies.  

To retrieve additional information on patenting activity (e.g., application dates, technological 

codes, etc.), the publication number of the patents collected from Orbis IP are matched to those 

in the Worldwide Patent Statistical Database (PATSTAT) of the EPO.13 In particular, we identified 

those patents that report a Cooperative Patent Classification (CPC) code equal to Y02, indicating 

the technologies or applications for mitigation or adaptation against climate change (Climate 

Change Mitigation Technologies, CCMT). Among patenting Cleantech companies (2,705), 43.1% 

have at least one patent in a CCMT-related field. Distinguishing between the segments of 

Innovators and ecosystem companies, this share becomes 61.9% and 35.3%, respectively. 

Table 5: EPO patenting activity of Cleantech companies  

 
Cleantech companies Cleantech innovators Cleantech ecosystem 

# companies % # companies % # companies % 

At least one in any field 2,705 11.3%* 792 26.5%* 1,913 9.2%* 

At least one in a CCMT field 1,166 43.1%** 490 61.9%** 676 35.3%** 

*Of all Cleantech companies 

**Of patenting Cleantech companies 

Source: Orbis, authors’ calculations 

The patenting intensity of specific technology categories typically depends on a number of 

factors, such as the technology’s novelty, its market potential, the intellectual property landscape 

it operates in, regulatory considerations, or strategic motives. Novel and inventive technologies 

with commercial potential are more likely to be eligible for patents. 

Table 6 and Table 7 report the distribution of EPO patenting firms by technological category for 

the two sub-samples of companies belonging to Cleantech innovators and the Cleantech 

ecosystem, respectively. The technological category with the largest share of patenting 

companies is that of Sustainable raw materials (2.3) in the former sample and that of Sustainable modes 

of transport (5) in the latter one. We also computed the share of patenting firms that filed at least 

one patent application in a CCMT field, for each technological category. After excluding the 

smallest domains in terms of the number of firms, the technological category with the largest 

proportion of companies with CCMT patents is that of Sustainable fuels (3.2) in the sub-sample of 

Cleantech innovators and Sustainable modes of transport (5) in the sub-sample of Cleantech 

ecosystem. 

 

13 We used the Autumn Edition of 2021. 
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Table 6: Distribution of EPO patenting Cleantech companies by technological category in the 

segment of Cleantech innovators* 

Technological category 

At least one EPO patent 

in any field 

At least one EPO patent 

in a CCMT field 

# companies %** # companies %*** 

Air/water/soil pollution abatement/remediation (1.1) 138 32.4% 73 52.9% 

Waste management (1.2) 102 29.4% 59 57.8% 

Water conservation/availability (2.1) 24 25% 5 20.8% 

Sustainable agri-food technologies (2.2) 25 23.8% 9 36% 

Sustainable raw materials (2.3) 34 44.7% 18 52.9% 

Sustainable energy production (3.1) 284 21.2% 221 77.8% 

Sustainable fuels (3.2) 27 20.2% 23 85.2% 

Energy-efficient industrial technologies (3.3) 145 35.6% 87 60% 

Capture, storage, sequestration or disposal of GHG (4) 2 40% 2 100% 

Sustainable modes of transport (5) 36 40% 24 66.7% 

Sustainable buildings (6) 128 27% 61 47.7% 

Others 0  0  

Total 792 26.5% 490 61.9% 

*Each company can be associated to multiple technological categories; hence, the totals are not the sum of the row values. 

**Of all Cleantech companies 

***Of patenting Cleantech companies 

Source: Orbis, authors’ calculations 

Table 7: Distribution of EPO patenting Cleantech companies by technological category in the 

segment of Cleantech ecosystem* 

Technological category 

At least one EPO patent 

in any field 

At least one EPO patent 

in a CCMT field 

# companies %** # companies %*** 

Air/water/soil pollution abatement/remediation (1.1) 591 9.6% 191 32.3% 

Waste management (1.2) 369 6.7% 115 31.2% 

Water conservation/availability (2.1) 164 13.5% 69 42.1% 

Sustainable agri-food technologies (2.2) 68 5.9% 19 27.9% 

Sustainable raw materials (2.3) 72 17.7% 24 33.3% 

Sustainable energy production (3.1) 462 9.7% 206 44.6% 

Sustainable fuels (3.2) 155 11.6% 71 45.8% 

Energy-efficient industrial technologies (3.3) 327 8.6% 123 37.6% 

Capture, storage, sequestration or disposal of GHG (4) 1 8.3% 1 100% 

Sustainable modes of transport (5) 38 20.9% 19 50% 

Sustainable buildings (6) 186 10% 67 36% 

Others 59 8.6% 18 30.5% 

Total 1,913 9.2% 676 35.3% 

* each company can be associated to multiple technological categories; hence, the totals are not the sum of the row values. 

**Of all Cleantech companies. 

***Of patenting Cleantech companies. 

Source: Orbis, authors’ calculations 
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The innovative capacity of a local Cleantech ecosystem differs between countries. According to 

Table 8, Austria’s Cleantech companies engage most intensely in patented innovation, with 22.2% 

of Cleantech companies owning at least one patented innovation. Sweden follows closely behind 

with 19.4%, while Germany ranks third with 17.7%. When specifically considering EPO patents in 

the CCMT fields, Austria also emerges as the leading country, with 50.4% of the patenting 

companies having at least one EPO patent in a CCMT field. Spain takes the second position with 

48.4%, closely followed by Germany with 48.2%. The data highlights the strong performance of 

Austria in both overall EPO patenting by Cleantech companies and specifically in the CCMT 

fields. This suggests that Austria’s Cleantech ecosystem is particularly innovation-intensive. 

Table 8: Distribution of EPO patenting Cleantech companies by country 

Country 

At least one EPO patent 

in any field 

At least one EPO patent 

in a CCMT field 

# companies %* # companies %** 

Germany 786 17.7% 379 48.2% 

Italy 558 13.1% 186 33.3% 

France 259 7.6% 95 36.7% 

Spain 182 8.8% 88 48.4% 

Poland 59 4.1% 17 28.8% 

Sweden 164 19.4% 73 44.5% 

Czech Republic 34 4.6% 15 44.1% 

Belgium 88 12.5% 31 35.2% 

Norway 70 10.3% 31 44.3% 

Austria 133 22.2% 67 50.4% 

Others*** 365 7.9% 181 49.6% 

Total 2,698 11.3% 1,163 43.1% 

*Of all Cleantech companies in a given country. 

**Of patenting Cleantech companies in a given country. 

***The residual category includes Romania, Finland, Portugal, Hungary, Netherlands, Denmark, Bulgaria, Slovakia, Serbia, Greece, 

Croatia, Lithuania, Slovenia, Latvia, Estonia, United Kingdom, Luxembourg, North Macedonia, Switzerland, Iceland, Malta, Turkey, 

Montenegro, Ireland, and Cyprus; the information on the NUTS area is missing for 7 patenting companies. 

Source: Orbis, authors’ calculations 

Innovative economic activities tend to cluster spatially due to knowledge spill-overs and access to 

skilled labour, among other things. Clustering facilitates the exchange of ideas, promotes 

efficiency and creates scale effects in innovative activities. Figures 9 illustrates, respectively, the 

geographic distribution of the share of patenting firms in the sub-samples of Cleantech innovators 

and Cleantech ecosystem by NUTS-3 area and indeed reveals clear clustering patterns in 

patenting intensity. The share of patenting tends to be higher in areas with more Cleantech 

activity, typically around Europe’s traditional VC-hubs.  
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Figure 9: The share of patenting Cleantech companies by NUTS3 area 

a) Cleantech innovators b) Cleantech ecosystem 

  
  

  < 5%  

  5-10%  

  11-25%  

  26-50%  

  > 50%   

  N/A  

Source: Orbis, authors’ calculations 

Finally, patenting intensity also differs depending on the ecosystem segments identified in section 

2.3 | (Table 9). Experimenters engage most intensely in patenting activity (30.1%). They are followed 

by Innovators (26.49%) and Manufacturers (21.91%).   
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Table 9: Distribution of EPO patenting Cleantech companies by ecosystem segment 

Category 

At least one EPO patent 

in any field 

At least one EPO patent 

in a CCMT field 

# companies %* # companies %** 

Innovators 792 26.49% 490 61.87% 

Experimenters 31 30.10% 11 35.48% 

Manufacturers 1,179 21.91% 396 33.59% 

Distributors 174 5.21% 56 32.18% 

Integrators 307 4.68% 106 34.53% 

Operators 222 4.04% 107 48.20% 

Total 2,705 11.34% 1,166 43.11% 

*Of all Cleantech companies. 

**Of patenting Cleantech companies. 

Source: Orbis, authors’ calculations 

3.3 | Financial KPIs 

By collecting information on several essential financial KPIs from Orbis, we are able to construct 

a more detailed overview on the average scale of the Cleantech companies in our sample (Table 

10). There were 239,450 data points relating to 23,828 Cleantech companies over the period 2009 

until 2022, with a company being covered for an average time span of 10 years.  

Table 10: Descriptive statistics for selected financial KPIs for the full sample of Cleantech 
companies 

 Cleantech companies  

 # obs Mean Median St. dev. Min Max 

Sales (000'€) 239,450 149,137 9,707 2,474,602 0 291,000,000 

Total assets (000'€) 184,867 196,288 8,664 3,442,078 0 283,000,000 

Net profit (000'€) 231,074 5,419 195 145,218 -16,500,000 19,900,000 

EBITDA (000'€) 218,641 18,541 695 372,836 -7,245,000 40,100,000 

# Employees 190,340 413 48 3,980 0 291,000 

Source: Orbis, authors’ calculations 

In Table 11, we report the mean values of the main accounting variables separately for Cleantech 

innovators and Cleantech ecosystem companies. We also performed a t-test comparison, as 

reported in the last columns of the table below, reporting differences and significance. Cleantech 

innovators typically operate at a larger scale, compared to their ecosystem counterparts. 
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Table 11: Mean values for selected financial KPIs: Innovators vs Ecosystem 
 Cleantech innovators Cleantech ecosystem Difference Significance-level* 

Sales (000'€) 215,393 139,534 75,860 (***) 

Total assets (000'€) 258,346 187,377 70,969 (***) 

Net profit (000'€) 6,384 5,278 1,107  

EBITDA (000'€) 22,659 17,943 4,716 (**) 

# Employees 688 372 317 (***) 

* (**) and (***) indicate significantly different means at the 5%- and 1%-level respectively.  

Source: Orbis, authors’ calculations 

3.4 | Venture capital investment in 

Cleantech companies 

VC financing is a crucial source of external funding for Cleantech companies. Cleantech 

innovations often require significant upfront investments in research and development, prototype 

development, and scaling up production. Venture capitalists are able to provide the necessary 

funding to support such high-cost activities, which may be difficult to obtain from other 

traditional financing sources. In addition, Cleantech companies often face longer time horizons 

for commercialisation and profitability, due, for example, to regulatory complexities, market 

adoption challenges, and technological advancements. VC investors, with their risk-tolerant 

approach and longer investment horizons, are well positioned to provide patient capital and 

support the company's growth over the long term. In addition, they bring industry expertise, 

networks and business guidance, which can help Cleantech companies navigate the complex 

landscape, access markets, and achieve scalability.  

Matching our data on Cleantech companies from the Orbis database with data on VC investment 

from VICO 4.0,14 a pan-European dataset on VC investment activity developed by the RISIS2 EU-

funded Horizon 2020 project (comprising more than 54,910 European VC investment deals), 

allows us to develop a better understanding of the role of VC in European Cleantech development. 

Table 13 illustrates the involvement of VC investors in the Cleantech companies identified in Orbis. 

A total of 170 companies (0.71% of the 23,828 Cleantech companies) received at least one 

investment from VC investors. Unsurprisingly, VC involvement is substantially larger for Cleantech 

innovators (2.2%), compared to the ecosystem companies (0.5%). These relatively modest shares 

evidence that our identification methodology and resulting database is complementary to existing 

investment-based databases. 

 

14 The VICO dataset collects VC deals as contained in the commercial databases Zephyr, Crunchbase and Thomson Eikon. For more 

information, see https://rcf.risis2.eu/dataset/12/metadata.  

https://rcf.risis2.eu/dataset/12/metadata
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Table 12: Distribution of VC-backed Cleantech companies by category 

 Cleantech companies Cleantech innovators Cleantech ecosystem 

# companies % # companies % # companies % 

# VC-backed companies  170 0.71% 66 2.21% 104 0.50% 

Total # companies 23,828  2,985  20,843  

Source: Orbis, VICO4.0, authors’ calculations 

TablesTable 14 andTable 15 report the distribution of VC-backed companies by technological 

category for the two sub-samples of companies belonging to Cleantech innovators and the 

Cleantech ecosystem, respectively. In both samples, the category with the highest share of VC-

backed companies is "Sustainable energy production (3.1)". Moreover, VC-involvement is particularly 

prevalent for Cleantech innovator active in the technological category “Energy-efficient industrial 

technologies (3.3)”. These findings align with a recent EIF report (de Haan Montes et al., 2023) that 

analysed Cleantech VC deals from the Pitchbook database and found that energy-related 

Cleantech companies represent a substantial portion of Cleantech VC and PE growth investment 

activity across the EU. 

Table 13: Distribution of VC-backed Cleantech innovator companies by technological category  

Technological category 
VC-backed companies 

 # companies % 

Air/water/soil pollution abatement/remediation (1.1) 5 7.6% 

Waste management (1.2) 4 6.1% 

Water conservation/availability (2.1) 0 0% 

Sustainable agri-food technologies (2.2) 1 1.5% 

Sustainable raw materials (2.3) 4 6.1% 

Sustainable energy production (3.1) 36 54.6% 

Sustainable fuels (3.2) 4 6.1% 

Energy-efficient industrial technologies (3.3) 17 25.8% 

Capture, storage, sequestration or disposal of GHG (4) 0 0% 

Sustainable modes of transport (5) 0 0% 

Sustainable buildings (6) 6 9.1% 

Others 0 0% 

Total 66 2.2% 

*Each company can be associated to multiple technological categories; hence, the totals are not the sum of the row values. 

Source: Orbis, VICO 4.0, authors’ calculations 
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Table 14: Distribution of VC-backed Cleantech ecosystem companies by technological category  

Technological category 
VC-backed companies 

 # companies % 

Air/water/soil pollution abatement/remediation (1.1) 24 18.3% 

Waste management (1.2) 24 19.2% 

Water conservation/availability (2.1) 4 3.9% 

Sustainable agri-food technologies (2.2) 2 1% 

Sustainable raw materials (2.3) 11 6.7% 

Sustainable energy production (3.1) 85 47.1% 

Sustainable fuels (3.2) 14 9.6% 

Energy-efficient industrial technologies (3.3) 36 18.3% 

Capture, storage, sequestration or disposal of GHG (4) 0 0% 

Sustainable modes of transport (5) 3 2.9% 

Sustainable buildings (6) 13 6.7% 

Others 4 0.6% 

Total 104 0.5% 

*Each company can be associated to multiple technological categories; hence, the totals are not the sum of the row values. 

Source: Orbis, VICO 4.0, authors’ calculations 

Within the group of Cleantech ecosystem companies, two additional technological categories, 

namely "Air/water/soil pollution abatement/remediation (1.1)" and "Waste management (1.2)", exhibit a 

comparable level of VC financing as the "Energy-efficient industrial technologies (3.3)" sub-category. 

Approximately 18-19% of VC-backed companies in the Cleantech ecosystem belong to these 

categories, indicating that aside from supporting energy-related technology, VC investors also 

recognise the importance of solutions addressing environmental pollution and waste 

management challenges. 

Patents are important for VC investors as they provide a means to protect the intellectual property 

rights of innovative technologies, thereby ensuring a competitive advantage and improved growth 

prospects for investee companies. Patents also enhance the attractiveness of companies to 

potential investors, by signalling the innovative potential of the patenting company. This holds 

true also for green technologies (Belucci et al., 2021). The data in Table 15  presents the distribution 

of EPO patenting Cleantech firms categorized by their VC-backed status. Among the VC-backed 

firms, 5.8% of the companies have filed at least one EPO patent in any field. Notably, 63.7% of the 

patenting companies that received VC investments have obtained at least one EPO patent 

specifically in the CCMT (Clean and Climate-friendly Mobile Technologies) fields. 
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Table 15: Distribution of EPO patenting Cleantech companies by VC-backed status 

 
At least one EPO patent 

in any field 

At least one EPO patent 

in a CCMT field 

 # companies %  # companies % 

VC-backed firms 88 5.8% 56 63.6% 

Non-VC-backed firms 2,610 11% 1,107 42.4% 

Total 2,698 11.3% 1,163 43.1% 

*Each company can be associated to multiple technological categories; hence, the totals are not the sum of the row values. 

Source: Orbis, VICO 4.0, authors’ calculations 

Table 16 reports the distribution of VC-backed Cleantech companies by country. Among the VC-

backed Cleantech companies, the 23.5% is located in France, followed by Finland (18.8%), 

Germany (11.8%), and Sweden (8.8%). Considering only Cleantech innovators, it is worth noting 

that Finland holds the highest representation with 31.8% of VC-backed companies belonging to 

this group, followed by France (19.7%) and Estonia (15.6%). VC investment intensity, calculated as 

the share of Cleantech companies that received VC investments, differs significantly between 

countries, and ranges from less than a percentage point (Spain, 0.43%; Germany, 0.45%) to more 

than 10% (Estonia, 13.3%).  

Table 16: Distribution of VC-backed Cleantech companies by country 

Country 

Cleantech companies Cleantech innovators Cleantech ecosystem 

 # companies 
% of total 

VC-backed 

% of national 

Cleantechs* 
 # companies %  # companies % 

France 40 23.5% 1.2% 13 19.7% 27 26% 

Finland 32 18.8% 6.4% 21 31.8% 11 10.6% 

Germany 20 11.8% 0.45% 1 1.5% 19 18.3% 

Sweden 15 8.8% 1.8% 6 9.1% 9 8.7% 

Estonia 11 6.5% 13.3% 10 15.6% 1 0.96% 

Austria 9 5.3% 1.5% 7 10.6% 2 1.9% 

Spain 9 5.3% 0.43% 1 1.5% 8 7.7% 

Italy 5 2.9%  1 1.5% 4 3.9% 

Netherlands 5 2.9%  1 1.5% 4 3.9% 

United Kingdom 5 2.9%  1 1.5% 4 3.9% 

Belgium 4 2.4%  1 1.5% 3 2.9% 

Denmark 4 2.4%  0 0% 4 3.9% 

Lithuania 2 1.2%  2 3% 0 0% 

Czech Republic 1 0.6%  1 1.5% 0 0% 

Others** 8 4.7%  0 0% 8 7.7% 

Total 170 100%  66 100% 104 100% 

*The share of VC-backed companies in the number of national Cleantech companies is only reported for those countries with more 

than 5 VC-backed companies. 

**The residual category includes Greece, Hungary, Poland, Portugal, Slovakia and Slovenia. 

Source: Orbis, VICO 4.0, authors’ calculations 
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Table 17 reports the distribution of VC-backed Cleantech companies by ecosystem segment. The 

findings reflect the fact that VC investor typically look for highly innovative companies with 

maximum growth potential. Hence, nearly 40% of VC-backed companies were classified as 

Innovators, followed by Manufacturers (28.2%) and Operators (12.9%).  

Table 17: Distribution of VC-backed Cleantech companies by ecosystem segment 

Category 
Cleantech companies Cleantech innovators Cleantech ecosystem 

 # companies %  # companies %  # companies % 

Innovators 66 38.8% 66 100 % 0 0% 

Experimenters 1 0.59% 0 0% 1 0.96% 

Manufacturers 48 28.2% 0 0% 48 46.2% 

Distributors 15 8.8% 0 0% 15 14.4% 

Integrators 18 10.6% 0 0% 18 17.3% 

Operators 22 12.9% 0 0% 22 21.2% 

Total 170 100% 66 100% 104 100% 

Source: Orbis, VICO 4.0, authors’ calculations 
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4 | Conclusion 
The European Green Deal is a comprehensive strategy aimed at achieving carbon-neutrality by 

2050. It encompasses various interventions to drive sustainable development, with a particular 

emphasis on technological innovation. By focusing on decarbonising the energy sector, improving 

energy efficiency, promoting circular economy practices, and advancing sustainable 

transportation solutions, the Green Deal seeks to foster a "green" or "clean" economy. Innovations 

in the field of environmental sustainability, commonly referred to as Cleantech, are a key element 

of Europe’s environmental and net-zero strategy. Unfortunately, today, no suitable framework, 

classification or method exists to identify and classify companies engaged in Cleantech 

innovation.  

To accommodate this shortcoming, we developed a three-steps methodology based on: (i) a 

supervised ML algorithm applied to the extended business description of the full sample of 

European companies retrieved from Orbis dataset (ii) computer-aided filter of false positive 

Cleantech instances applied to each company labelled as (iii) a manual classification to identify 

companies that are committed to develop clean technologies, which led to the identification of 

23,858 Cleantech companies, 2,990 of which were classified as “Cleantech innovators”, while the 

remaining 20,868 companies were designated to the “Cleantech ecosystem”. Identified 

companies were furthermore classified into different technology categories, such as 

environmental management, resources preservation, industrial energy management, capture, 

storage, sequestration or disposal of GHG, sustainable modes of transport and sustainable 

buildings. The database was subsequently enriched with financial accounting data (Orbis), patent 

information provided by (Orbis IP) and VC-investment data (VICO 4.0). The resulting novel 

database provides a unique perspective on the European Cleantech landscape.  

The results presented in this paper provide a brief description of this database and serve as the 

introductory analysis of the EIBURS-funded15 CLEU research project.16 In doing so, we provided 

a number of interesting insights into the European Cleantech ecosystem.  

Comparing our newly developed Cleantech classification to the traditional NACE sector 

classification, we found that Cleantech companies are predominantly active in the manufacturing, 

wholesale and retail trade, water supply and waste management, and construction sectors. 

Examining the spatial distribution of Cleantech in Europe, Germany, Italy, and France emerge as 

the key countries with the highest concentration of Cleantech companies. We also found 

Cleantech to be a well-established phenomenon, pre-dating to a large extent the two important 

Cleantech investment cycles, as a significant portion of the companies were established before 

the 2000s. We also analysed patenting activity of our Cleantech sample and found that Austria’s 

Cleantech ecosystem is the most innovation-intensive, followed by Sweden and Germany, with 

 

15 The EIB University Research Sponsorship (EIBURS) programme provides grants to help EU universities and academic research 

centres to develop activities in selected research areas in addition to those that would normally be carried out by the beneficiary and 

on topics of major interest to the EIB Group (EIB and EIF). 
16  CLEU: The cleantech industry in the European Green Deal: policy challenges and the finance landscape for SMEs. For more 

information, see: https://scienzeaziendali.unibo.it/en/research/research-projects/european-projects/cleu-the-cleantech-industry-in-the-european-

green-deal-policy-challenges-and-the-finance-landscape-for-smes. 

https://scienzeaziendali.unibo.it/en/research/research-projects/european-projects/cleu-the-cleantech-industry-in-the-european-green-deal-policy-challenges-and-the-finance-landscape-for-smes
https://scienzeaziendali.unibo.it/en/research/research-projects/european-projects/cleu-the-cleantech-industry-in-the-european-green-deal-policy-challenges-and-the-finance-landscape-for-smes
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sustainable energy production, energy-efficient industrial technologies, and air/water/soil 

pollution being the prominent technological categories for patenting. Investigating a selection of 

essential financial KPIs led us to conclude that Cleantech innovators tend to operate at a larger 

scale compared to their ecosystem counterparts, in terms of total assets, sales, and employee 

count. Finally, concerning VC financing, Finland, Sweden, France, and Spain emerge as the 

geographical areas with a high concentration of VC-backed companies.  

The data presented in our study reaffirms the vibrant nature of the Cleantech industry in Europe. 

With a flourishing startup ecosystem, the sector is well-positioned to contribute significantly to 

the shift towards a low-carbon economy and tackle the urgent global challenge of climate change. 

Our findings also highlight notable variations among European countries, reflecting the diverse 

landscape in terms of investment levels, innovation and regulatory support across Member States. 

These differences underscore the need for targeted strategies tailored to each country's specific 

context to foster sustainable growth and maximize the potential of the Cleantech industry in 

Europe. 
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Annexes 
Annex A: The evolution of the Cleantech concept 

Cleantech, also known as clean technology, is an industry sector that focuses on developing and 

deploying sustainable and environmentally friendly solutions for various sectors. One of the most 

debated topics among academics and practitioners relates to the concept’s exact definition. The 

origin of the term “cleantech” is somewhat difficult to trace to a single originator, as it has been 

used in various forms and contexts by different individuals and organisations over time. However, 

one of the earliest known uses of the term “clean technology” can be traced back to the early 

1990s, when it was used by business and industry leaders in California to describe a new wave of 

environmentally friendly and sustainable technologies. According to some sources, John Balbach, 

a California-based consultant and entrepreneur, is sometimes credited with coining the term 

“cleantech”. Balbach reportedly used the term to describe a broad range of emerging technologies 

and business models that focused on environmental sustainability and energy efficiency.  

Given the importance of the topic, in 2002, the Cleantech Venture Network (nowadays known as 

Cleantech Group), a network of investors, was founded in San Francisco, California, “to address 

the lack of capital for clean technology ventures and the absence of a coordinated support 

network for the industry.” (https://www.cleantech.com/). As part of its mission to help 

entrepreneurs, investors, corporations, service providers, government agencies, academic 

institutions, and non-profit organisations to connect, collaborate, and access the resources they 

needed to support and grow the cleantech industry, the organisation began using the term 

“cleantech” as a way of defining and promoting the sector, becoming an important segment of the 

broader technology and investment landscape. Lately, investors, in order to attract more capital, 

have chosen to use a different term referring to competitive (in terms of returns) investments that 

aim to solve the environmental problem (Caprotti, 2011). This strategy has led VC investments to 

grow by about 50% a year from 2004 to 2008, reaching a value of about $ 5 billion (Mills, 2015). 

However, the win-win strategy17 has failed since the crisis of 2008. 

From an academic perspective, one early and influential work on clean technology was the book 

“Soft Energy Paths: Toward a Durable Peace” by Amory Lovins (1977), which argued for a 

transition away from centralised, fossil-fuel-based energy systems towards decentralised, 

renewable-based systems. Later on, in addition to works investigating technical aspects of 

cleantech technologies, the management literature of cleantech started to be interested in the 

topic too, covering a wide range of topics, including: i) innovation and technology management 

(i.e., to explore the role of R&D, intellectual property, open innovation, and collaborative 

innovation in the development of cleantech products and services); ii) financing and investment 

(i.e., to investigate VC, public funding, and corporate investments as sources of capital available 

to cleantech firms and the factors that influence investment decisions, such as risk, uncertainty, 

and environmental regulations); iii) business models and strategy (i.e., to understand how firms 

create and capture value from their clean technologies); iv) environmental sustainability and 

 

17 Win-win because of the double goal: sustainability and profitability. 
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corporate social responsibility (i.e., to figure out how cleantech firms address sustainability 

challenges, such as energy and resource efficiency, waste reduction, and carbon emissions); v) 

supply chain management (i.e., to explore the complexities of managing global supply chains for 

cleantech products, including issues related to supplier selection, quality control, and 

sustainability); vi) organisational behaviour (i.e., to analyse the motivation, values, and beliefs of 

cleantech entrepreneurs and employees, as well as the impact of organisational culture and 

leadership on innovation and performance); vii) policy and regulation (i.e., to explore the 

effectiveness of different policy instruments, such as subsidies, tax incentives, and carbon pricing, 

in promoting the transition to a low-carbon economy, how firms comply with regulations and how 

regulatory frameworks affect the profitability of cleantech firms).
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Annex B: Machine learning-based classification 

The Phases of supervised Machine Learning 

The initial step of our methodology was developing a ML classification tool to filter off all the 

companies which were certainly not Cleantechs. Specifically, we resorted to text classification, 

which is the process of automatically assigning documents to one or more predefined categories 

based on their content (Yang & Liu, 1999). Text classification can be naturally modelled as a 

supervised learning task in which a decision function is first derived by applying a machine-

learning method on a set of labelled documents (training set), is evaluated on another set of 

labelled documents (test set), and then is applied to predict the category of incoming texts whose 

class is unknown.  

To create the training set and the test set, we randomly selected from the initial sample 8,501 

companies’ descriptions. Each description was classified as Cleantech or non-Cleantech by two 

independent research assistants. As noted by Sebastiani (2002), it is easier for an analyst to 

characterize a concept extensionally, i.e., to select instances of it, rather than intentionally, i.e., to 

describe the concept in words. Consistently, we provided the research assistants a general 

definition of Cleantech as those technologies that have a positive environmental impact, e.g. in 

terms of reduction of the consumption of non-renewable resources or of waste produced (Pernick 

and Wilder, 2007). Any doubt about the classification of a particular technology, as well as any 

inconsistency was discussed between the research assistants and the authors until an agreement 

was reached. We provided research assistants with the textual description of the companies’ 

business activity only in order to avoid the manual classification process being biased by 

information gathered from external, not standardised sources. Classified documents have been 

split between training and test set following a 70/30 rule. Table B.1 provides details upon this split.  

 Table B.1: Division of the sample between training and testing 

 Negative Positive Sum 

Train 5,833 118 5,951 

Test 2,499 51 2,550 

Sum 8,332 169 8,501 

Feature extraction 

Following the creation of the training and test sets, we prepared each document to generate a list 

of features used in the subsequent ML predictive task. Feature extraction techniques stem from 

text mining, which is converting free text into numerical variables that can be then analyzed using 

statistical tools (Feinerer et al., 2008).  

The first step of this procedure is text pre-processing, which converts a vector of documents into 

a corpus, which is then converted into a document term matrix (DTM). The algorithm is called “bag-

of-words”. This first step also includes the text cleaning process (e.g. converting the entire text to 

lowercase characters and removing all unnecessary punctuation and symbols). In our analysis, we 

used different text-cleaning procedures, specifically: 
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• converting upper case letters to lower case;  

• spell checking; 

• substitution of contractions, such as converting “I’m” to “I am”; 

• removing numbers; 

• removing punctuation and special characters (for instance @,°,# [,§ etc.);  

• converting acronyms to regular expressions, such as “IT” to “Italy”. 

Furthermore, stop words were removed (a list of the stop words is reported in Annex C). Stop words 

are frequently used in texts but are poorly useful for predictions; as such, they can be omitted from 

the analysis.  

After carrying out the pre-processing phase, we performed text normalisation to convert words 

into their simplest form. In fact, it is known that any language includes words of various tenses, 

plurals, or derived from other words. Our goal was to reduce the words to their common root. A 

“lemmatisation” process was developed to group the various inflected forms of a word so that 

they can be analysed as a single lemma. An alternative to lemmatisation is “stemming”. Unlike 

lemmatisation, stemming generates meaningless roots from words whose semantic nature can be 

very poor.  

Using the abovementioned corpus of documents, we constructed our Document Term Matrix. 

This object is a simple matrix structure, with each document as a row and each n-gram (or term) 

as a column. Once we constructed the DTM, we calculated the frequencies (total times each n-

gram appears in all documents), with the n-grams as the names of the vector. In our analysis, we 

created two different tokeniser functions to construct the DTM for 1-gram and 2-grams.  

Only n-grams with a frequency higher or equal to a specific threshold are kept in the model. The 

threshold is given using sparsity optimisation, which refers to the relative document frequency 

threshold for a term. In our case, with a sparseness equal to 0.50, only terms occurring in half of 

the documents were retained. At the end of this process, we extrapolated 251 1-gram and 181 2-

grams for a total of 432 features.18 These features are used for training the Cleantech predictive 

model. 

Prediction Task 

The prediction task aims to produce an accurate predicting map between the features generated 

in phase 2 and the “true” Cleantech label (1 = Cleantech firm; 0 = non-Cleantech firm) using the 

available training dataset. This mapping is then projected to the unlabelled firms to provide them 

with an appropriate Cleantech predicted label. We used and compared various popular ML 

 

18 Examples of features extrapolated and used for training the Cleantech predictive model are: 1) for 1-gram features: Taxonomy, clean,  

electr, electron, energy, fuel, gas, power, process, produc, product, service, storag, util, vehicle, water; 2) for 2-grams features: 

building_materi, company_engag, company_produc, company_provid, construction_materi, construction_servic, engineering_servic, 

engineering_work, food_product, fresh_fruit, frozen_food, high_qual, industrial_build, information_technolog, maintenance_servic, 

management_servic, metal_product, motor_vehicl, necessary_assist, new_work, operation_specialis, personal_car, petroleum_product, 

pharmaceutical_product, predominantly_oper, primarily_engag, public_organ, raw_materi, related_servic, repair_servic, 

residential_build, retail_distribut, retail_sal, retail_trad, stateoftheart_technolog, transportation_servic, utility_vehicl, 

wholesale_distribut, wholesale_trad, wide_rang, wide_varieti. 
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methods to carry out this task by paying particular attention to their out-of-sample predicting 

performance. We selected the classifier providing the best test accuracy. 

Consider a firm 𝑖 with an associated target binary variable 𝑃𝑖 (“being Cleantech”) that takes values 

one (positive occurrence) if the firm is (manually) classified as Cleantech and value zero (negative 

occurrence) otherwise. Based on the set of features created by the previous bag-of-words 

algorithm (𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖) and referring to the firm 𝑖, our prediction task was to find a mapping 

function 𝑓(∙) (i.e., a ML binary classifier) that predicts as best as possible the Cleantech event (i.e., 

the two-class variable 𝑃𝑖 ): 

                       𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖
𝑓(.)
→ 𝑃𝑖  (1) 

The features used to predict 𝑃𝑖 are those described in the previous section and refer to the 

frequency of lemmatised words (251 1-gram features). The standard ML procedure to first train 

and then test the mapping function is that of randomly splitting the data into a training set, over 

which the model is estimated and tuned, and a testing set, over which its predictive power is tested 

(Hastie et al., 2009).  

The size of these two sets must be chosen considering the trade-off between the benefit of a large 

training set (i.e., more information for building the mapping in (1)) and the benefit of a sufficiently 

large testing set (i.e., larger information for a more precise estimation of the testing error). To 

account for this trade-off, we followed the usual compromise of randomly dividing the database 

into 70% of observations for training and the remaining observations as an out-of-sample test set 

(Boehmke and Greenwell, 2019).  

To carry out our analysis, we used four different ML predicting algorithms: 

• Naïve Bayes (NB): a discriminant classifier assuming no correlation among the 

features in each class (Gareth et al., 2013); 

• Random Forest (RF): a family of randomised tree-based classifier decision trees 

which uses different random subsets of the features at each split in the tree 

(Breiman, 2001); 

• Gradient Boosting Machines (GBM): an ensemble method which works in an 

iterative way where at each stage new learner tries to correct the pseudo-residual 

of its predecessors (Friedman, 2001); 

• Neural Network (NN): a model that uses a set of connected input/output units in 

which each connection has an associated weight and learns by adjusting the 

weights to predict the correct class label of the given inputs (Ripley et al., 2016). 

We also dealt with target variable imbalance. Indeed, firms classified as Cleantech are largely 

fewer than firms not classified as Cleantech (169 out of 8,501) and this generally produces under-

performing predictions, as the unconditional probability to be Cleantech is highly skewed towards 

the absence of Cleantech, thus giving this category a larger advantage when classifying new 

instances. To address the imbalance issue, the four ML models were estimated using two different 

strategies: 
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• Class weighting: a method imposing a higher cost when errors are made in the 

minority class (based on the inverse probability weighting of the observations); 

• Random Over-Sampling Examples (ROSE): an algorithm where artificially balanced 

samples are generated according to a smoothed bootstrap approach (Lunardon et 

al., 2014). 

The hyper-parameters optimisation was carried out over the training set using 10-fold 

repeated cross-validation, with five repetitions in the case of Class weights and 50 repetitions 

in the case of ROSE. All models were implemented using the R software, trained with the 

optimisation algorithms available through the CARET package (Kuhn, 2020). 

The performance of Cleantech classification prediction was assessed through the Receiver 

Operating Characteristics (ROC) curve (Fawcett, 2006). The ROC curve shows the classifier’s 

diagnostic ability by plotting the true positive rate (TPR) on the y-axis against the false 

positive rate (FPR) on the x-axis since its discrimination threshold is varied (Antulov-Fantulin 

et al., 2021).  

Results using the class weighting strategy 

Figure B.1 shows the ROC curves for the four algorithms trained on 70% of the observations and 

tested on the remaining 30% using the class weighting strategy. The estimates are based on the 

cross-validation algorithm, which trains and tests the model by tuning the hyper-parameters to 

maximise the area under the ROC curve. 

Figure B.1: Class weighting, ROC curves (on the test set)* 

 
* Repeated Cross-validation: Number (number of folds or number of resampling iterations) = 10. Repeat (for repeated k-fold cross-

validation only: the number of complete sets of folds to compute) = 5. The hyper-parameters best tune used in the final models with 

class weighting is shown in Table B.2.   
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Table B.2: Class weighting: best tuning parameter 
NB RF GBM NN 

fL = 0 Mtry= 2 n.trees = 150 size = 1 

Usekernel = TRUE  interaction.depth =1 decay = 0.1 

Adjust = 1  shrinkage = 0.1  

  n.minobsinnode = 10  

Table B.3 shows the model performance for the class weights strategy; one class means the 

model classifies all as negative due to the unbalancing of the data. The only model predicting 

positives in the case of Class weights is the GBM. The performances of GBM are satisfactory 

(Accuracy=0.937; and AUC=0.944). 

Table B.3: Class weighting: model performances (on the test set) 

 GBM RF NN NB 

Accuracy 0.937 one class one class one class 

Sensitivity 0.814 one class one class one class 

Specificity 0.939 one class one class one class 

Pos Pred Value 0.185 one class one class one class 

Neg Pred Value 0.997 one class one class one class 

Prevalence 0.017 one class one class one class 

Detection Rate 0.014 one class one class one class 

Detection Prevalence 0.074 one class one class one class 

Balanced Accuracy 0.876 one class one class one class 

Area under the curve 0.944 one class one class one class 

Results using the ROSE strategy 

Figure B.2 shows the ROC curves for the four algorithms trained on 70% of the observations and 

tested on the remaining 30% using the ROSE strategy. As before, the estimates are based on the 

cross-validation algorithm, which trains and tests the model tuning the hyper-parameters to 

maximise the area under the ROC curve. 
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Figure B.2: ROSE, ROC curves (on the test set)* 

 
*Repeated Cross-validation: Number (number of folds or number of resampling iterations) = 10. Repeat (for repeated k-fold 

cross-validation only: the number of complete sets of folds to compute) = 50. Hyper-parameters best tune used in the final 

models with ROSE is shown in Table B.4.   

Table B.4: ROSE, best tuning parameter 
NB RF GBM NN 

fL = 0 Mtry= 2 n.trees = 100 size = 1 

Usekernel = TRUE  interaction.depth =1 decay = 0.1 

Adjust = 1  shrinkage = 0.1  

  n.minobsinnode = 10  

Table B.5 shows the model performance for the ROSE strategy. In this case, all models classify 

both categories (positives and negatives). The best model for accuracy and AUC is the GBM 

(Accuracy=0.922; and AUC=0.941). 
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Table B.5: ROSE: model performances (on the test set) 

 GBM RF NN NB 

Accuracy 0.922 0.854 0.844 0.629 

Sensitivity 0.744 0.907 0.860 0.814 

Specificity 0.925 0.853 0.844 0.625 

Pos Pred Value 0.146 0.096 0.086 0.036 

Neg Pred Value 0.995 0.998 0.997 0.995 

Prevalence 0.017 0.017 0.017 0.017 

Detection Rate 0.013 0.015 0.015 0.014 

Detection Prevalence 0.086 0.160 0.168 0.382 

Balanced Accuracy 0.835 0.880 0.852 0.720 

Area under the curve 0.941 0.939 0.942 0.779 

Best model selection results 

It is worth noticing that the results presented above refer to a 1-gram DTM, as results from using a 

2-grams DTM are equivalent but require a more considerable computational burden. 

In both the strategies used to deal with the unbalanced data (class weighting and ROSE), the 

algorithm with the best performance is GBM. Regarding accuracy and AUC, the GBM 

combined with class weighting outperforms the GBM combined with ROSE, so we selected 

the GBM combined with class weighting for final prediction. Table B.6 shows our main result, 

the confusion matrix for the best model on the entire database. 

Table B.6: Confusion matrix with the best model (GBM combined with Class weights) 

 Negative Positive Sum 

Negative 8,538 1,005 9,543 

Positive 58 399 457 

Not Classified 454,486 72,643 527,129 

Sum 463,082 74,047 537,129 

The result of this phase was a sample reduced to 74,047 companies (out of the initial sample 

made of 537,129 companies). 
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Annex C: List of stop words 

a 

a’s 

able 

about 

above 

according 

accordingly 

across 

actually 

after 

afterwards 

again 

against 

ain’t 

all 

allow 

allows 

almost 

alone 

along 

already 

also 

although 

always 

am 

among 

amongst 

an 

and 

another 

any 

anybody 

anyhow 

anyone 

anything 

anyway 

anyways 

anywhere 

apart 

appear 

appreciate 

appropriate 

are 

aren’t 

around 

as 

aside 

ask 

asking 

associated 

at 

available 

away 

awfully 

b 

be 

became 

because 

become 

becomes 

becoming 

been 

before 

beforehand 

behind 

being 

believe 

below 

beside 

besides 

best 

better 

between 

beyond 

both 

brief 

but 

by 

c 

c’mon 

c’s 

came 

can 

can’t 

cannot 

cant 

cause 

causes 

certain 

certainly 

changes 

clearly 

co 

com 

come 

comes 

concerning 

consequently 

consider 

considering 

contain 

containing 

contains 

corresponding 

could 

couldn’t 

course 

currently 

d 

definitely 

described 

despite 

did 

didn’t 

different 

do 

does 

doesn’t 

doing 

don’t 

done 

down 

downwards 

during 

e 

each 

edu 

eg 

eight 

either 

else 

elsewhere 

enough 

entirely 

especially 

et 

etc 

even 

ever 

every 

everybody 

everyone 

everything 

everywhere 

ex 

exactly 

example 
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except 

f 

far 

few 

fifth 

first 

five 

followed 

following 

follows 

for 

former 

formerly 

forth 

four 

from 

further 

furthermore 

g 

get 

gets 

getting 

given 

gives 

go 

goes 

going 

gone 

got 

gotten 

h 

had 

hadn’t 

happens 

hardly 

has 

hasn’t 

have 

haven’t 

having 

he 

he’s 

hello 

help 

hence 

her 

here 

here’s 

hereafter 

hereby 

herein 

hereupon 

hers 

herself 

hi 

him 

himself 

his 

hither 

hopefully 

how 

howbeit 

however 

i 

i’d 

i’ll 

i’m 

i’ve 

ie 

if 

ignored 

immediate 

in 

inasmuch 

inc 

indeed 

indicate 

indicated 

indicates 

inner 

insofar 

instead 

into 

inward 

is 

isn’t 

it 

it’d 

it’ll 

it’s 

its 

itself 

j 

just 

k 

keep 

keeps 

kept 

know 

knows 

known 

l 

last 

lately 

later 

latter 

latterly 

least 

less 

lest 

let 

let’s 

like 

liked 

likely 

little 

look 

looking 

looks 

ltd 

m 

mainly 

many 

may 

maybe 

me 

mean 

meanwhile 

merely 

might 

more 

moreover 

most 

mostly 

much 

must 

my 

myself 

n 

name 

namely 

nd 

near 

nearly 

necessary 

need 

needs 

neither 

never 

nevertheless 

new 

next 

nine 

no 

nobody 

non 



Annexes    |     45 

 

none 

noone 

nor 

normally 

not 

nothing 

novel 

now 

nowhere 

o 

obviously 

of 

off 

often 

oh 

ok 

okay 

old 

on 

once 

one 

ones 

only 

onto 

or 

other 

others 

otherwise 

ought 

our 

ours 

ourselves 

out 

outside 

over 

overall 

own 

p 

particular 

particularly 

per 

perhaps 

placed 

please 

plus 

possible 

presumably 

probably 

provides 

q 

que 

quite 

qv 

r 

rather 

rd 

re 

really 

reasonably 

regarding 

regardless 

regards 

relatively 

respectively 

right 

s  

said 

same 

saw 

say 

saying 

says 

second 

secondly 

see 

seeing 

seem 

seemed 

seeming 

seems 

seen 

self 

selves 

sensible 

sent 

serious 

seriously 

seven 

several 

shall 

she 

should 

shouldn’t 

since 

six 

so 

some 

somebody 

somehow 

someone 

something 

sometime 

sometimes 

somewhat 

somewhere 

soon 

sorry 

specified 

specify 

specifying 

still 

sub 

such 

sup 

sure 

t 

t’s 

take 

taken 

tell 

tends 

th 

than 

thank 

thanks 

thanx 

that 

that’s 

thats 

the 

their 

theirs 

them 

themselves 

then 

thence 

there 

there’s 

thereafter 

thereby 

therefore 

therein 

theres 

thereupon 

these 

they 

they’d 

they’ll 

they’re 

they’ve 

think 

third 

this 

thorough 

thoroughly 

those 
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though 

three 

through 

throughout 

thru 

thus 

to 

together 

too 

took 

toward 

towards 

tried 

tries 

truly 

try 

trying 

twice 

two 

u 

un 

under 

unfortunately 

unless 

unlikely 

until 

unto 

up 

upon 

us 

use 

used 

useful 

uses 

using 

usually 

uucp 

v 

value 

various 

very 

via 

viz 

vs 

w 

want 

wants 

was 

wasn’t 

way 

we 

we’d 

we’ll 

we’re 

we’ve 

welcome 

well 

went 

were 

weren’t 

what 

what’s 

whatever 

when 

whence 

whenever 

where 

where’s 

whereafter 

whereas 

whereby 

wherein 

whereupon 

wherever 

whether 

which 

while 

whither 

who 

who’s 

whoever 

whole 

whom 

whose 

why 

will 

willing 

wish 

with 

within 

without 

won’t 

wonder 

would 

would 

wouldn’t 

x 

y 

yes 

yet 

you 

you’d 

you’ll 

you’re 

you’ve 

your 

yours 

yourself 

yourselves 

z 

zero 
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