Symbols and Charges for Monoatomic Ions					
Symbol	Name	Symbol	Name	Symbol	Name
\mathbf{H}^+	hydrogen ion	Sr ²⁺	strontium ion	Br ⁻	bromide
Li ⁺	lithium ion	Ba ²⁺	barium ion	Ι.	iodide
Na ⁺	sodium ion	Ra ²⁺	radium ion	O ²⁻	oxide
K ⁺	potassium ion	Zn ²⁺	zinc ion	S ²⁻	sulfide
\mathbf{Rb}^+	rubidium ion	Ca ²⁺	calcium ion	Se ²⁻	selenide
Cs ⁺	cesium ion	Al ³⁺	aluminum ion	Te ²⁻	telluride
Ag ⁺ Be ²⁺	silver ion	H-	hydride	N ³⁻	nitride
Be ²⁺	beryllium ion	F ⁻	fluoride	P ³⁻	phosphide
Mg^{2+}	magnesium ion	Cl -	chloride	As ³⁻	arsenide

Golden Sheet of Nomenclature Symbols and Charges for Monoatomic Ion

Note that the letters in an anion's name before the -ide ending is the stem. For example, the stem for bromide is brom- and the stem for sulfur is sulf-.

Symbols and Charges for Polyatomic Ions

Formula	Name	Formula	Name	
$\mathbf{NH_4}^+$	ammonium	ClO ₄ ⁻	perchlorate	
NO ₃	nitrate	$C_2H_3O_2$	acetate (CH ₃ COO ⁻)	
$\frac{NO_2}{CrO_4}^2$	nitrite	ClO ₃ ⁻	chlorate	
CrO ₄ ²⁻	chromate	ClO ₂ ⁻	chlorite	
$Cr_2O_7^{2-}$	dichromate	ClO ⁻	hypochlorite	
CN ⁻	cyanide	IO ₄ ⁻	periodate	
MnO ₄ ⁻	permanganate	IO ₃ ⁻	iodate	
OH-	hydroxide	IO .	hypoiodite	
$0.12 \\ 0.2^{2}$	peroxide	BrO ₃ ⁻	bromate	
NH_2	amide	BrO ⁻	hypobromite	
$\frac{\text{CO}_3^2}{\text{SO}_4^2}$	carbonate	HCO ₃ ⁻	hydrogen carbonate (bicarbonate)	
SO4 ²⁻	sulfate	HSO ₄ ⁻	hydrogen sulfate (bisulfate)	
SO ₃ ²⁻	sulfite	HSO ₃ ⁻	hydrogen sulfite (bisulfite)	
$C_2O_4^{2-}$	oxalate	HC_2O_4	hydrogen oxalate (binoxalate)	
	phosphate	HPO4 ²⁻	hydrogen phosphate	
PO3 ³⁻	phosphite	H_2PO_4	dihydrogen phosphate	
$S_2O_3^{2-}$	thiosulfate	HS ⁻	hydrogen sulfide	
AsO_4^{3-}	arsenate	BO ₃ ³⁻	borate	
SeO ₄ ²⁻	selenate	$B_4O_7^{2-}$	tetraborate	
SiO ₃ ²⁻	silicate	SiF ₆ ²⁻	hexafluorosilicate	
C ₄ H ₄ O ₆ ²⁻	tartrate	SCN ⁻	thiocyanate	

Prefixes Used to Indicate Number in a Name Involving Two Non-metals

mono-	1	hexa-	6
di-	2	hepta-	7
tri-	3	octa-	8
tetra-	4	nona-	9
penta-	5	deca-	10

These prefixes are used in naming binary compounds involving two non-metals. Example include P_2O_5 , Cl_2O , NO, N_2O , NO_2 , N_2O_5 , PCl_3 , PCl_5 , SO_2 , SO_3 , SiO_2 . Sometimes metal ions are involved in a Greek prefix name, but these are less common. Examples include UF₆, SbCl₃, SbCl₅, OsO₄, BiCl₃.

Golden Sheet of Nomenclature

There is a preferred order of the nonmetals when writing them in a formula. It is: Rn, Xe, Kr, B, Si, C, Sb, As, P, N, H, Te, Se, S, I, Br, Cl, O, F.

CO is carbon monoxide, **NOT** carbon monooxide. As_4O_6 is tetrarsenic hexoxide, **NOT** tetraarsenic hexaoxide.

	Metals with more than one oxidation number					
Symbol	Systematic name (stock system)	Classical Name	Symbol	Systematic Name (stock system)	Classical Name	
Cu ¹⁺	copper (I)	cuprous	Hg_2^{2+}	mercury (I)	mercurous	
Cu ²⁺	copper (II)	cupric	Hg ²⁺	mercury (II)	mercuric	
Fe ²⁺	iron (II)	ferrous	Pb ²⁺	lead (II)	plumbous	
Fe ³⁺	iron (III)	ferric	Pb ⁴⁺	lead (IV)	plumbic	
Sn ²⁺	tin (II)	stannous	Co ²⁺	cobalt (II)	cobaltous	
Sn ⁴⁺	tin (IV)	stannic	Co ³⁺	cobalt (III)	cobaltic	
Cr ²⁺	chromium (II)	chromous	Au ⁺	gold (I)	aurous	
Cr ³⁺	chromium (III)	chromic	Au ³⁺	gold (III)	auric	
Mn ²⁺	manganese (II)	manganous	Ni ²⁺	nickel (II)	nickelous	
Mn ³⁺	manganese (III)	manganic	Ni ³⁺	nickel (III)	nickelic	

Metals with more than one oxidation number

Acid Names

	Non-Oxygen Contain	Oxygen Containing (Oxyacids)		
Formula	Name when dissolved in H ₂ O	Name as a pure compound	Formula	Name
HF	hydrofluoric acid	hydrogen fluoride	HNO ₃	nitric acid
HCl	hydrochloric acid	hydrogen chloride	HNO ₂	nitrous acid
HBr	hydrobromic acid	hydrogen bromide	H ₂ SO ₄	sulfuric acid
HI	hydroiodic acid	hydrogen iodide	H_2SO_3	sulfurous acid
HCN	hydrocyanic acid	hydrogen cyanide	H ₃ PO ₄	phosphoric acid
H_2S	hydrosulfuric acid	hydrogen sulfide	HC ₂ H ₃ O ₂ (CH ₃ COOH)	acetic acid

Add the word acid to each name when saying or writing.

Note that it is hydrogen sulfide, \underline{NOT} hydrogen sulfuride.

Diatomic Elements

The following elements are diatomic elements: Br, I, N, Cl, H, O, and F. For example, hydrogen would be written as H_2 and oxygen would be written as O_2 when they are not combined with other elements. To remember this, remember the name "**BrINClHOF**" (said brinkle-hoff) or the phrase "<u>I Have No Bright Or Clever Friends</u>." Lastly, you can look for the hockey puck (Hydrogen) and stick (Nitrogen, Oxygen, Fluorine, Chlorine, Bromine, Iodine).