208

Chapter 6. Constraint Satisfaction Problems

6.2 CONSTRAINT PROPAGATION: INFERENCE IN CSPs

INFERENCE

CONSTRAINT
PROPAGATION

LOCAL
CONSISTENCY

NODE CONSISTENCY

ARC CONSISTENCY

In regular state-space search, an algorithm can do only one thing: search. In CSPs there is a
choice: an algorithm can search (choose a new variable assignment from several possibilities)
or do a specific type of inference called constraint propagation: using the constraints to
reduce the number of legal values for a variable, which in turn can reduce the legal values
for another variable, and so on. Constraint propagation may be intertwined with search, or it
may be done as a preprocessing step, before search starts. Sometimes this preprocessing can
solve the whole problem, so no search is required at all.

The key idea is local consistency. If we treat each variable as a node in a graph (see
Figure 6.1(b)) and each binary constraint as an arc, then the process of enforcing local con-
sistency in each part of the graph causes inconsistent values to be eliminated throughout the
graph. There are different types of local consistency, which we now cover in turn.

6.2.1 Node consistency

A single variable (corresponding to a node in the CSP network) is node-consistent if all
the values in the variable’s domain satisfy the variable’s unary constraints. For example,
in the variant of the Australia map-coloring problem (Figure 6.1) where South Australians
dislike green, the variable SA starts with domain {red, green, blue}, and we can make it
node consistent by eliminating green, leaving SA with the reduced domain {red, blue}. We
say that a network is node-consistent if every variable in the network is node-consistent.

It is always possible to eliminate all the unary constraints in a CSP by running node
consistency. It is also possible to transform all n-ary constraints into binary ones (see Ex-
ercise 6.6). Because of this, it is common to define CSP solvers that work with only binary
constraints; we make that assumption for the rest of this chapter, except where noted.

6.2.2 Arc consistency

A variable in a CSP is arc-consistent if every value in its domain satisfies the variable’s
binary constraints. More formally, X; is arc-consistent with respect to another variable X if
for every value in the current domain D; there is some value in the domain D; that satisfies
the binary constraint on the arc (X;, X;). A network is arc-consistent if every variable is arc
consistent with every other variable. For example, consider the constraint Y = X2 where the
domain of both X and Y is the set of digits. We can write this constraint explicitly as

((X’ Y)’ {(0’ 0)’ (1’ 1)’ (2, 4)’ (3’ 9))}) *
To make X arc-consistent with respect to Y, we reduce X’s domain to {0,1,2,3}. If we
also make Y arc-consistent with respect to X, then Y’s domain becomes {0, 1, 4,9} and the
whole CSP is arc-consistent.

On the other hand, arc consistency can do nothing for the Australia map-coloring prob-
lem. Consider the following inequality constraint on (SA, WA):

{(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)} .

Section

slems

reisa
lities)
nts to
values
1, Or it
1g can

h (see
l con-
ut the

t if all
ample,
ralians
nake it
:}. We
1t.

g node
ee Ex-

binary

riable’s
e X 7 if
;atisfies
e is arc
1ere the

. If we
and the

1g prob-

n)}.

Section 6.2.

Constraint Propagation: Inference in CSPs = 209

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(X;, X;) — REMOVE-FIRST(queue)
if REVISE(csp, X;, X;) then
if size of D; = O then return false
for each X in X; . NEIGHBORS - {X;} do
add (X, X;) to queue
return {rue

function REVISE(csp, X;, X;) returns true iff we revise the domain of X;
revised «— false
for each z in D; do
if no value y in D, allows (z,y) to satisfy the constraint between X, and X; then
delete z from D;
revised «— true
return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc
is arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be
solved. The name “AC-3” was used by the algorithm’s inventor (Mackworth, 1977) because
it’s the third version developed in the paper.

No matter what value you choose for SA (or for WA), there is a valid value for the other
variable. So applying arc consistency has no effect on the domains of either variable.

The most popular algorithm for arc consistency is called AC-3 (see Figure 6.3). To
make every variable arc-consistent, the AC-3 algorithm maintains a queue of arcs to consider.
(Actually, the order of consideration is not important, so the data structure is really a set, but
tradition calls it a queue.) Initially, the queune contains all the arcs in the CSP. AC-3 then pops
off an arbitrary arc (X;, X;) from the queue and makes X; arc-consistent with respect to Xj;.
If this leaves D; unchanged, the algorithm just moves on to the next arc. But if this revises
D; (makes the domain smaller), then we add to the queue all arcs (X, X;) where X is a
neighbor of X;. We need to do that because the change in D; might enable further reductions
in the domains of Dy, even if we have previously considered X. If D; is revised down to
nothing, then we know the whole CSP has no consistent solution, and AC-3 can immediately
return failure. Otherwise, we keep checking, trying to remove values from the domains of
varjables until no more arcs are in the queue. At that point, we are left with a CSP that is
equivalent to the original CSP—they both have the same solutions—but the arc-consistent
CSP will in most cases be faster to search because its variables have smaller domains.

The complexity of AC-3 can be analyzed as follows. Assume a CSP with n variables,
each with domain size at most d, and with ¢ binary constraints (arcs). Each arc (Xk, X;) can
be inserted in the queue only d times because X; has at most d values to delete. Checking

210

Chapter 6. Constraint Satisfaction Problems

GENERALIZED ARC
CONSISTENT

PATH CONSISTENCY

consistency of an arc can be done in O(d?) time, so we get O(cd®) total worst-case time.!

It is possible to extend the notion of arc consistency to handle n-ary rather than just
binary constraints; this is called generalized arc consistency or sometimes hyperarc consis-
tency, depending on the author. A variable X; is generalized arc consistent with respect to
an n-ary constraint if for every value v in the domain of X; there exists a tuple of values that
is a member of the constraint, has all its values taken from the domains of the corresponding
variables, and has its X; component equal to v. For example, if all variables have the do-
main {0, 1,2, 3}, then to make the variable X consistent with the constraint X < Y < Z,
we would have to eliminate 2 and 3 from the domain of X because the constraint cannot be
satisfied when X is 2 or 3.

6.2.3 Path consistency

Arc consistency can go a long way toward reducing the domains of variables, sometimes
finding a solution (by reducing every domain to size 1) and sometimes finding that the CSP
cannot be solved (by reducing some domain to size 0). But for other networks, arc consistency
fails to make enough inferences. Consider the map-coloring problem on Australia, but with
only two colors allowed, red and blue. Arc consistency can do nothing because every variable
is already arc consistent: each can be red with blue at the other end of the arc (or vice versa).
But clearly there is no solution to the problem: because Western Australia, Northern Territory
and South Australia all touch each other, we need at least three colors for them alone.

Arc consistency tightens down the domains (unary constraints) using the arcs (binary
censtraints). To make progress on problems like map coloring, we need a stronger notion of
consistency. Path consistency tightens the binary constraints by using implicit constraints
that are inferred by looking at triples of variables.

A two-variable set {X;, X;} is path-consistent with respect to a third variable X, if,
for every assignment {X; = a, X; = b} consistent with the constraints on {X;, X}, there is
an assignment to X, that satisfies the constraints on {X;, X, } and {Xr,, X;}. This is called
path consistency because one can think of it as looking at a path from X; to X; with X, in
the middle.

Let’s see how path consistency fares in coloring the Australia map with two colors. We
will make the set { WA, SA} path consistent with respect to NT. We start by enumerating the
consistent assignments to the set. In this case, there are only two: { WA = red, SA = blue}
and { WA = blue, SA = red}. We can see that with both of these assignments NT can be
neither red nor blue (because it would conflict with either WA or SA). Because there is no
valid choice for NT', we eliminate both assignments, and we end up with no valid assignments
for { WA, SA}. Therefore, we know that there can be no solution to this problem. The PC-2
algorithm (Mackworth, 1977) achieves path consistency in much the same way that AC-3
achieves arc consistency. Because it is so similar, we do not show it here.

1 The AC-4 algorithm (Mohr and Henderson, 1986) runs in O(cd?) worst-case time but can be slower than AC-3
on average cases. See Exercise 6.13.

Sectic

K-CONSIS'

STRONGLY
K-CONSIS®

