SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING PHYSICS (23HS0840) Course & Branch: B.Tech – EEE ,ECE,CSE & CSIT (I –SEM) CE, ME, CSM, CAD, CIC, CCC & CAI (II SEM).

Year &Sem: I-B.Tech I & I/II -Sem.

Regulation: R23

UNIT- I (WAVE OPTICS)

			10011	[0] []	FT 11
	a	Define Interference.	[CO1]	[2M]	[L1]
	b	Define Diffraction.	[CO1]	[2M]	[L1]
	С	Define Polarisation.	[CO1]	[2M]	[L1]
	d	Define Diffraction Grating.	[CO1]	[2M]	[L1]
	e	Define Resolving Power of Grating.	[CO1]	[2M]	[L1]
	a	State and explain principle of superposition.	[CO1]	[4M]	[L2]
2	b	Discuss the theory of interference of light due to thin films by	[CO1]	[6M]	[L2]
		reflection with suitable ray diagram.			
3	а	Describe the formation of Newton's ring with necessary theory	[CO1]	[6M]	[L3]
		with relevant diagrams.			
	b	Explain how the wavelength of light sources is determined using	[CO1]	[4M]	[L2]
		Newton's rings.			
4	а	Distinguish between Fraunhofer and Fresnel's diffraction.	[CO1]	[5M]	[L3]
	b	Compare Interference and Diffraction.	[CO1]	[5M]	[L2]
5		In the study of Fraunhofer diffraction due to single slit how the	[CO1]	[10M]	[L4]
		diffraction fringes formed. Derive the conditions for bright and			
		dark fringes.			
6	а	Describe Fraunhofer diffraction due to double slit and derive the	[CO1]	[8M]	[L3]
		conditions for principal maxima, secondary maxima and minima.			
	b	A plane transmission grating having 4250 lines per cm is	[CO1]	[2M]	[L3]
		illuminated with sodium light normally. In the second order			
		spectrum, the spectral lines are deviated by 30° . What is the			
		wavelength of the spectral line?			
7	а	Describe the Fraunhofer Diffraction Due to N-Slits.	[CO1]	[6M]	[L2]
	b	Define Dispersive power and resolving power of Grating and	[CO1]	[4M]	[L3]
		write their expressions.			
8	а	Mention the representation of the Plane polarized light and	[CO1]	[4M]	[L1]
		unpolarized light			
	b	Explain the various types of polarizations.	[CO1]	[6M]	[L2]
9	а	Explain the Polarization by reflection with neat sketch.	[CO1]	[5M]	[L2]
	b	Illustrate the Double refraction in crystal.	[CO1]	[5M]	[L4]
10	a	Explain the production of plane polarized light using Nicol Prism.	[CO1]	[6M]	[L2]
_	b	Describe the propagation of polarized light in Quarter –Wave	[CO1]	[4M]	[L3]
	-	plate.	[]	r1	[]
11	а	Describe the propagation of polarized light in Half – Wave plate.	[CO1]	[6M]	[L3]
	b	Calculate the thickness of Half-Wave plate, given that $\mu_e = 1.533$,	[CO1]	[4M]	[L4]
<u> </u>	5	entenne ne memess er run wure plute, given nut pe = 1.555,	[001]	['-'*]	ני יין

 $\mu_e = 1.544$ and $\lambda = 5000$ A⁰.

UNIT – II <u>CRYSTALLOGRAPHY & X-RAY DIFFRACTION</u>

			T		
	a	Define lattice parameter?	[CO2]	2M	[L1]
	b	Draw the planes for given Miller indices i). (111) ii). (202)	[CO2]	2M	[L3]
		in cubic system.			
1	с	Define unit cell .	[CO2]	2M	[L1]
	d	Define Bragg's condition for X-Ray diffraction.	[CO2]	2M	[L1]
	e	What are applications of Powder X-Ray diffraction method?	[CO2]	2M	[L1]
2	а	What is (i) Unit cell (ii) Basis (iii) Bravais Lattice.	[CO2]	[3M]	[L1]
	b	Explain the various types of crystal systems with a neat sketch	[CO2]	[7M]	[L2]
		and examples			
3	a	Explain the various types of Bravais lattices with a neat sketch	[CO2]	[4M]	[L2]
	b	Define atomic packing fraction and derive it for simple cubic	[CO2]	[6M]	[L3]
		crystal structure.			
4		Define atomic packing fraction and derive it for body centered	[CO2]	[10M]	[L3]
		cubic crystal structure.			
5		Show that Face centered cubic crystal structure has more closely	[CO2]	[10M]	[L3]
		packed structure than SC and BCC.			
6	а	What are Miller indices? Mention the procedure to find Miller	[CO2]	[6M]	[L1]
		indices			
	b	Write the important features of Miller indices	[CO2]	[4M]	[L1]
	а	Deduce the expression for the inter planar distances in terms of	[CO2]	[7M]	[L4]
7		miller indices for a cubic system			
	b	Draw miller indices of planes $(1 \ 0 \ 0)$, $(1 \ 0 \ 1)$ and $(0 \ 1 \ 1)$ in a	[CO2]	[3M]	[L4]
		cubic system.			
	а	Define the Bragg's law of X-ray diffraction and derive	[CO2]	[6M]	[L3]
8		$2d \sin\theta = n\lambda$	[]	[]	[]
	b	Calculate d_{100} : d_{110} : d_{111} for a cubic crystal system.	[CO2]	[4M]	[L3]
	а	Derive the Bragg's condition for X-ray diffraction.	[CO2]	[6M]	[L3]
9	b	A beam of X rays of wavelength 0.71 nm is diffracted by (110)	[CO2]	[4M]	[L3]
	-	plane of rock salt with lattice constant of 0.28nm. Find the	[]	[]	[]
		glancing angle for the second order diffraction.			
	a	Explain how crystal structure determined by Laue X-Ray	[CO2]	[7M]	[L2]
10		diffraction method.	[00-]	[,]	[]
	b	What are the advantages of Laue X-Ray diffraction method?	[CO2]	[3M]	[L1]
	a	Explain how crystal structure determined by Powder X-Ray	[CO2]	[7M]	[L2]
11	u	diffraction method.			
**	b	What are the advantages of Powder X-Ray diffraction method?	[CO2]	[3M]	[L1]
	υ	what are the advantages of Powder A-Kay diffraction method?	[002]		լլլ

QUESTION BANK

		<u> UNIT – III (DIELECTRICS AND MAGNETIC MATEI</u>	RIALS)		
1.	a	Define dielectric polarization	[CO3]	[2M]	[L1]
	b	Define dielectric polarisability	[CO3]	[2M]	[L1]
	с	Define magnetic susceptibility and magnetization.	[CO4]	[2M]	[L1]
	d	What is Bohr magnetron?	[CO4]	[2M]	[L1]
	e	What is hysteresis?	[CO4]	[2M]	[L1]
2.	a	With usual notations, show that $P = \varepsilon_0 (\varepsilon_r - 1)E$	[CO4]	[6M]	[L3]
	b	Write the differences between polar and non -polar molecules	[CO3]	[4M]	[L2]
3.	a	Explain the different types of polarizations.	[CO3]	[4M]	[L2]
	b	Derive the expression for electronic polarizability, α_e in dielectrics.	[CO3]	[6M]	[L3]
4.	a	Deduce an expression for Lorentz field relating to Dielecric material.	[CO3]	[7M]	[L4]
	b	The relative permittivity of argon at 0° C and at 1 atmospheric pressure is 1.000435.Calculate the polarizability of the atom if the gas contains 2.7x10 ²⁵ atoms/m ³ .Given ε_0 = 8.85 x 10 ⁻¹² F/m.	[CO3]	[3M]	[L2]
5.	а	Obtain Clausius-Mosotti equation and explain how it can be used to determine the dipole moment of a polar molecule. A solid elemental dielectric with $3x10^{28}$ atoms/ m ³ shows an	[CO3]	[7M]	[L4]
	b	A solid elemental dielectric with 3×10^{28} atoms/ m ³ shows an electronic polarisability of 10^{-40} F-m ² assuming the internal electric field to be a Lorenz field. Calculate a dielectric constant of the material.	[CO3]	[3M]	[L1]
6.	а	Discuss the frequency dependence of various polarization processes in dielectric materials.	[CO3]	[7M]	[L2]
	b	Write the causes for Dielectric loss.	[CO3]	[3M]	[L4]
7	a	Describe the origin of magnetic moment in an atom.	[CO4]	[6M]	[L1]
	b	A circular loop of copper having a diameter of 10 cm carries a current of 500mA.Calculate the magnetic moment associated with the loop.	[CO4]	[4M]	[L3]
8		Describe the classification of magnetic materials based magnetic moments.	[CO4]	[10M]	[L1]
9	а	Explain hysteresis of ferromagnetic material.	[CO4]	[8M]	[L2]
	b	A magnetic material has magnetization 3300A/m and flux density of 0.0044 Wb/m ² . Calculate the magnetizing force and relative permeability of the material.	[CO4]	[2M]	[L3]
10	а	Explain the domain concept of ferromagnetism.	[CO4]	[7M]	[L2]
	b	A paramagnetic material has a magnetic field intensity of 10^4 A/m. If the susceptibility of the material at room temperature is 3.7×10^{-3} . Calculate the magnetization and flux density in the material.	[CO4]	[3M]	[L3]
11	a	Distinguish between Soft and Hard magnetic material.	[CO4]	[8M]	[L2]
	b	A paramagnetic material has 10^{28} atoms per m ³ . Its susceptibility at 350 K is 2.8 x 10^{-4} . Calculate the susceptibility at 300 K.	[CO4]	[2M]	[L3]

<u>UNIT – IV (QUANTUM MECHANICS & FREE ELECTRON THEORY)</u>

·					· · · · · · · ·
1	а	What are matter waves	[CO5]	[2M]	[L1]
	b	Mention any two properties of matter waves.	[CO5]	[2M]	[L1]
	С	What is drift velocity?	[CO5]	[2M]	[L1]
	d	Define mean free path.	[CO5]	[2M]	[L1]
	e	What is Fermi energy level?	[CO5]	[2M]	[L1]
2	а	Derive the expression for de Broglie wavelength	[CO5]	[6M]	[L3]
	b	Explain the properties of matter waves	[CO5]	[4M]	[L2]
3	а	Derive Schrödinger's time independent wave equation	[CO5]	[7M]	[L3]
	b	Explain the physical significance of wave function	[CO5]	[3M]	[L2]
4	а	Derive Schrödinger's time dependent wave equation.	[CO5]	[7M]	[L3]
	b	An electron is moving under a potential field of 15 kV. Calculate	[CO5]	[3M]	[L3]
		the wavelength of the electron wave.			
5	a	Explain Heisenberg uncertainty principle	[CO5]	[7M]	[L2]
	b	The position of an electron in an atom is located within a distance	[CO5]	[3M]	[L3]
		of 0.1 A^0 using a microscope. What is the uncertainty in the			
		momentum of the electron located in this way?			
6	а	Describe the behavior of particle in a one dimensional infinite	[CO5]	[8M]	[L2]
		potential well in terms of Eigen values and function.			
	b	An electron in bounded in a one dimensional infinite well having	[CO5]	[2M]	[L3]
		a width of 1×10^{-10} m. Find the energy values in the ground state			
		and the first two excited states.			
7	a	What are the postulates of classical free electron theory?	[CO5]	[4M]	[L1]
	b	Derive an expression for electrical conductivity in a metal by	[CO5]	[6M]	[L3]
		using classical free electron theory.	100.57		
8	b	Derive an expression for electrical conductivity in a metal by	[CO5]	[7M]	[L3]
		using Drude & Lorentz theory.	10077	FOR 53	
	с	Find relaxation time of conduction electron in metal if its 1.54×10^{-80}	[CO5]	[3M]	[L3]
		resistivity is $1.54 \times 10^{-8} \Omega$ -m and it has 5.8×10^{28} conduction			
		electron/m ³ .Given m= 9.1 x 10^{-31} kg, e= 1.6 x 10^{-19} C.	10051	F 4 B 4 7	FT 11
9	а	What are the advantages of quantum free electron theory over	[CO5]	[4M]	[L1]
	1	classical free electron theory?	10071		[1.2]
	b	Derive an expression for electrical conductivity in a metal by	[CO5]	[6M]	[L3]
10		quantum free electron theory.	10051	[/]]) (]	FT 11
10	а	Write brief note on Fermi Dirac distribution. What is the effect of	[CO5]	[7M]	[L1]
	1	temperature on Fermi Dirac distribution function?	10051	[2] []	[1.2]
	b	Find the probability at which there is 1% probability that a state	[CO5]	[3M]	[L3]
11		with energy 0.5 eV is above Fermi energy.	10051	[0] (]	FT 11
11	a	Define density of states in metals.	[CO5]	[2M]	[L1]
	b	Derive an expression for the number of allowed states per unit	[CO5]	[8M]	[L3]
		volume of a solid.			

QUESTION BANK

		<u>UNIT – V (SEMICONDUCTORS)</u>			
1	а	Write any two difference between Intrinsic and Extrinsic semiconductors.	[CO6]	[2M]	[L2]
	b	What is extrinsic semiconductor?	[CO6]	[2M]	[L1]
	с	Define Hall effect.	[CO6]	[2M]	[L1]
	d	What is Drift and Diffusion in semiconductors.	[CO6]	[2M]	[L1]
	e	What are the applications of Hall effect	[CO6]	[2M]	[L1]
2	a	What is Fermi level? Prove that the Fermi level is lies exactly in between conduction band and valance band of intrinsic semiconductor.	[CO6]	[6M]	[L4]
	b	If R_H of a specimen is 3.66 x 10 ⁻⁴ m ³ c ⁻¹ . Its resistivity is 8.93 x 10 ⁻³ Ω - m. Find mobility and electron concentration.	[CO6]	[4M]	[L3]
3	a	Derive the expression for the conductivity of intrinsic semiconductor with relevant energy band diagrams.	[CO6]	[7M]	[L3]
	b	The following data are given for an intrinsic Ge at 300K. Calculate the conductivity of the sample? ($n_i = 2.4 \times 10^{-19} \text{m}^{-3}$, $\mu_e = 0.39 \text{ m}^2 \text{-V}^{-1} \text{S}^{-1}$, $\mu_p = 0.19 \text{ m}^2 \text{-V}^{-1} \text{S}^{-1}$).	[CO6]	[3M]	[L3]
4	а	Explain the formation of n-type semiconductors with banddiagram	[CO6]	[7M]	[L2]
	b	In an Intrinsic semiconductor, the energy gap is 1.2 eV. Calculate the ratio between conductivity at 600K and at 300K.	[CO6]	[3M]	[L3]
5	a	Explain the formation of p-type semiconductors with banddiagram.	[CO6]	[7M]	[L2]
	b	The following data are given for an intrinsic Ge at 300K. Calculate the resistivity of the sample? (n_i = 2.4 x10 ¹⁹ m ⁻³ , μ_e = 0.39 m ² -V ⁻¹ S ⁻¹ , μ_p = 0.19 m ² -V ⁻¹ S ⁻¹).	[CO6]	[3M]	[L3]
6	а	Enumerate the expression for current generated due to drifting of charge carriers in semiconductors in the presence of electric field.	[CO6]	[5M]	[L1]
	b	Enumerate the expression for current generated due to diffusion of charge carriers in semiconductors in the absence of electric field.	[CO6]	[5M]	[L1]
7	а	Derive Einstein's relation for charge carriers in semiconductor	[CO6]	[7M]	[L3]
	b	Find the diffusion co-efficient of electron in Si at 300 K if $\mu_e = 0.19$ m ² -V ⁻¹ S ⁻¹ .	[CO6]	[3M]	[L3]
8	a	Describe the Hall Effect in semiconductors.	[CO6]	[8M]	[L1]
	b	What are the applications of Hall Effect?	[CO6]	[2M]	[L1]
9	a	Explain the formation of energy bands in solids.	[CO6]	[4M]	[L2]
	b	Classify the solids into conductor, semiconductor & insulators based on band theory of solids.	[CO6]	[6M]	[L2]
10	а	Prove that Fermi Level $E_F = \frac{E_C + E_V}{2}$ in the case of an intrinsic semiconductor.	[CO6]	[7M]	[L4]
	b	Mobilities of electrons and holes in an intrinsic germanium at 300K are 0.36 m ² /V-s and 0.17 m ² /V-s respectively. If the	[CO6]	[3M]	[L3]

QUESTION BANK

			resistivity is 2.12 Ω - m. Calculate the intrinsic concentration.			
11	8	a	Distinguish between Intrinsic and Extrinsic semiconductors.	[CO6]	[5M]	[L2]
	t	-	Explain the temperature dependence of Fermi Energy Level (E_F) in an Extrinsic semiconductor.	[CO6]	[5M]	[L2]

Prepared by: Dept. of Physics