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1 Complex numbers

A complex number is a number of the form x+ iy where x and y are real numbers
and i is the imaginary unit. The imaginary unit i is the complex number with the
property i2 = −1. For example 1+2i and 2−3i are complex numbers. The notations
x+ iy and x+ yi are used interchangeably.

All real numbers are complex numbers since we can write x = x+0i. The numbers
0 + bi, with b real, are also special case. These numbers are called pure imaginary

numbers. The only number which is both real and pure imaginary is the complex
number zero 0 = 0+ 0i. The most notable nonzero real number is 1 = 1+ 0i and the
most notable nonzero pure imaginary number is i = 0 + 1 i.

Complex numbers are often denoted by one symbol only: z = x + iy. The real
number x in z = x+ iy is called the real part of z; it is denoted by Re(z). The real
number y in z = x + iy is called the imaginary part of z; it is denoted by Im(z).
For example

Re(2− 3i) = 2, Im(2− 3i) = −3.

2 Arithmetic with complex numbers

Complex numbers can be added, subtracted, multiplied and divided. Whenever we
do operations with complex numbers it is important to clearly identify the resulting
complex number with its real and imaginary part.

To add (subtract) two complex numbers, simply add (subtract) the corresponding
real and imaginary parts. If z = x+ iy and w = u+ iv are complex numbers, then

z + w = (x+ u) + i(y + v), z − w = (x− u) + i(y − v).

To multiply two complex numbers, use distributive law and the fact that i2 = −1.
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With z and w as above,

zw = (x+ iy)(u+ iv)

= xu+ ixv + iyu+ i2yv

= (xu− yv) + i(xv + yu)

For example,

(2− 5i)(3 + 4i) = 6 + 8i− 15i− 20i2 = 6− 7i− 20(−1) = 26− 7i

Notice that it was quite easy to to calculate the real and the imaginary part of the
product of two complex numbers. The situation with division is not so simple. The
goal is to replace question marks with real numbers:

2− 5i

3 + 4i
= ?+? i

To accomplish this task it is important to note the following multiplication:

(x+ iy)(x− iy) = (xx− y(−y)) + (x(−y) + yx)i = x2 + y2.

For example,

(3 + 4i)(3− 4i) = 9− 12i+ 12i− 16i2 = 9 + 16 = 25.

We see that the result of this multiplication is a real number. This is important, since
we can use this to find the real and imaginary part in the fraction of two complex
numbers above:

2− 5i

3 + 4i
=

(2− 5i)(3− 4i)

(3 + 4i)(3− 4i)
=

6− 8i− 15i+ 20i2

25
=

−14− 23i

25
= −14

25
− 23

25
i.

The key here is to multiply 3+4i by 3−4i to get a real number in denominator. This
can be done for any complex number. But first introduce the following terminology.

For a complex number z = x+ iy, then the number x− iy is called the complex

conjugate of z; it is denoted by z∗ or z. The notation z∗ is used in electrical
engineering. In mathematics z is more common. Thus

z = z∗ = Re(z)− i Im(z).

Complex conjugates are often very useful. For example, if z = x+ iy and w = u+ iv
are complex numbers, then

w

z
=

w z

z z

=
(u+ iv)(x− iy)

(x+ iy)(x− iy)

=
(ux− uyi+ vxi+ vy

x2 + y2

=
ux+ vy

x2 + y2
+

vx− uy

x2 + y2
i.
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The complex conjugation has the following properties:

(z + w) = z + w, (z − w) = z − w, (z w) = z w
( z

w

)

=
z

w
,
(

z
)

= z.

We also have
z + z = 2Re(z) and z − z = 2i Im(z)

Consequently

Re(z) =
z + z

2
and Im(z) =

z − z

2i

3 Euler’s identity and

the complex exponential function

From calculus you are familiar with the exponential function et, here t is any real
number. This function is remarkable since it equals its own derivative and e0 = 1:

d

dt

(

et
)

= et and e0 = 1.

Other remarkable properties of the exponential function are

ea+b = ea eb, e−a =
1

ea
,

d

dt

(

eat
)

= aeat, (3.1)

where a, b and t are real numbers.
In the previous section we learned the arithmetic with complex numbers. The

next step is to learn the complex exponential function:

How to write ez = f(x, y) + ig(x, y)

where z = x+ iy and f(x, y) and g(x, y) are real functions of real variables x = Re(z)
and y = Im(z).

We expect that the complex exponential function will have the properties listed
in (3.1). With complex numbers z and w and real t we have

e0 = 1, ez+w = ez ew, e−z =
1

ez
,

d

dt

(

ezt
)

= zezt. (3.2)

The first step is to get the formula for the real and imaginary part of eit where t

is a real number. That is the famous Euler’s identity

eit = cos t + i sin t for all t ∈ R
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You might be asking: Why is this formula valid? A rigorous derivation of Euler’s
identity involves infinite series representation of the exponential function.

However, we can justify Euler’s identity just by using the properties in (3.2). Here
is a justification: Consider the function

r(t) =
(

cos t+ i sin t
)

e−it, where t is a real number.

Clearly, by (3.2), r(0) = 1. Next we calculate the derivative f ′(t). We first use the
product rule and (3.2), and after that algebra with complex numbers: and the usual
properties of differentiation:

r′(t) =
(

− sin t+ i cos t
)

e−it +
(

cos t+ i sin t
)

(−i)e−it

=
(

− sin t+ i cos t
)

e−it −
(

i cos t + i2 sin t
)

e−it

=
(

− sin t+ i cos t
)

e−it −
(

− sin t+ i cos t
)

e−it

= 0.

Since r′(t) = 0 for all real numbers t, the function r is constant. Since r(0) = 1, we
conclude that r(t) = 1 for all real t. That is

1 =
(

cos t + i sin t
)

e−it =
(

cos t + i sin t
) 1

eit
for all real t.

Therefore,
eit = cos t+ i sin t for all real t.

In other words, Euler’s formula is a natural consequence of the rules (3.2) and the
rules for the derivative.

With Euler’s identity and the rules (3.2) we can calculate the real and the imagi-
nary part of ez for z = x+ iy:

ez = ex+iy = ex eiy = ex
(

cos y + i sin y
)

= ex cos y + iex sin y.

Euler’s identity is an endless source of interesting formulas. For example

ei
π

2 = i , eiπ = −1 , ei
3π

2 = −i , e2iπ = 1 .

In fact, for any integer k ∈ {. . . ,−2,−1, 0, 1, 2, . . .} we have

e2kπi = 1 .
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4 The modulus of a complex number and

the argument of a complex number

The complex numbers are visualized as points in the complex plane. In this plane
the real numbers are on the horizontal axis and purely imaginary numbers are on the
vertical axes. A complex number z = x + iy is represented by the point with the
coordinates (x, y).

As you might have seen in calculus that the points in the xy-plane can be rep-
resented in polar coordinates as well. The polar coordinates of the point (x, y) are
(r, θ) where r ≥ 0 and θ ∈ (−π, π] and

x = r cos θ and y = r sin θ.

For given x and y the polar coordinates are calculated by

r =
√

x2 + y2 and θ =











arccos
(x

r

)

for y ≥ 0

− arccos
(x

r

)

for y < 0

In the terminology of complex numbers r is called the absolute value or the mod-
ulus of z = x+ iy, it is denoted by |z|, and θ is called the argument of z, it is denoted
by arg(z). That is,

|z| =
√

(Re z)2 + (Im z)2 =
√
z z and arg(z) =















arccos

(

Re z

|z|

)

for Im z ≥ 0

− arccos

(

Re z

|z|

)

for Im z < 0

With |z| and θ = arg(z) the complex number can be written in the following form

z = |z|
(

cos θ + i sin θ
)

= |z| eiθ .

This formula together with the rules for the exponential function provides a geo-
metric explantation how complex numbers are multiplied. If z1 and z2 are complex
numbers and θ1 = arg(z1) and θ2 = arg(z2), then

z1z2 = |z1| eiθ1 |z2| eiθ2 = |z1| |z2| eiθ1 eiθ2 = |z1| |z2| eiθ1+iθ2 = |z1| |z2| ei(θ1+θ2).

The rule is that the modulus of the product z1z2 is product of the moduli |z1| and
|z2| and the argument of the product z1z2 is the sum of the arguments of z1 and z2.
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z = x+ iy

x

y

θ|z|

−1 1

i

−i

Fig. 1: x < 0, y < 0, −π < θ < −π/2

x+ iy = z

x

y

θ

|z|

−1 1

i

−i

Fig. 2: x > 0, y < 0, −π/2 < θ < 0

x+ iy = z

x

y

θ

|z|

−1 1

i

−i

Fig. 3: x > 0, y > 0, 0 < θ < π/2

z = x+ iy

x

y

θ
|z|

−1 1

i

−i

Fig. 4: x < 0, y > 0, π/2 < θ < π

In each of the examples pictured above we have

Re(z) = x = |z| cos θ, Im(z) = y = |z| sin θ.

The angle θ can be calculated as

θ = arccos

(

Re(z)

|z|

)

, if Im(z) ≥ 0, (see Figures 3 and 4)

θ = − arccos

(

Re(z)

|z|

)

, if Im(z) < 0, (see Figures 1 and 2)
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5 Exercises

1. Express the following complex numbers in the form x+ iy.

(5− 6i) + (3 + 2i),
(

4− 1

2
i
)

−
(

9 +
5

2
i
)

, (2 + 5i)(4− i), (1− 2i)(8− 3i)

2. Find two distinct complex numbers z and w such that z2 = w2 = −1.

3. Find four distinct complex numbers z, u, v and w such that z4 = u4 = v4 = w4 = 1.

4. Evaluate the real and the imaginary part of the product

(√
3

2
+

1

2
i

)(

1

2
+

√
3

2
i

)

.

5. Evaluate the complex conjugates of the numbers

6 + 7i, −2 − 3i, 2i

(

1

2
− i

)

, eiπ/3.

Express your answers in the form x+ iy.

6. Express the following complex numbers in the form x+ iy:

1 + 4i

3 + 2i
,

3 + 2i

1− 4i
,

1

1 + i
,

3

4− 3i
,

1

i
.

7. Express the reciprocals of the following numbers in the form x+ iy:

1− i, 3− 2i, i, 2
√
3− 2i, −

√
2

2
+

√
2

2
i.

8. Write the following three complex numbers in the form x+ iy:

e−
2π

3
i, 4 e

π

6
i, e

2π

3
i + e

4π

3
i + e2πi.

9. Write the following four numbers in the form x+ iy:

3 e
3π

4
i, 6e−

22π

3
i, 11 e

14π

2
i, 3 e

3π

2
i,

10. Write the following numbers in polar form (|z| ei arg(z)):

4− 4i, −2i, 7
√
3− 7i, −2

√
3 + 2i, 2− 2

√
3i

11. Write the complex number
√
3 − i in polar form. Use the polar form to calculate

(√
3− i

)8
. Express the result in the form x+ iy.
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