

Pre-Leaving Certificate Examination, 2020

Mathematics

Higher Level – Paper 2 Marking Scheme (300 marks)

Structure of the Marking Scheme

Students' responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide students' responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. These scales and the marks that they generate are summarised in the following table:

Scale label	Α	В	С	D
No. of categories	2	3	4	5
5-mark scale		0, 2, 5	0, 2, 4, 5	0, 2, 3, 4, 5
10-mark scale			0, 4, 7, 10	0, 4, 6, 8, 10
15-mark scale				0, 4, 8, 12, 15

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (mid partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving **0** incorrect rounding, **2** omission of units, **3** a misreading that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, scale 10C* indicates that 9 marks may be awarded.

- The * for units to be applied only if the student's answer is fully correct.
- The * to be applied once only within each section (a), (b), (c), etc. of all questions
- The penalty is no applied for the omission of units in currency solutions.

Unless otherwise specified, accept correct answer with or without supporting work shown.

Accept students work in one part of a question for use in subsequent parts of the question, unless the oversimplifies the work involved

Page 47 of 95

Summary of Marks - 2020 LC Maths (Higher Level, Paper 2)

Sect	on A				Sectio	<u>a B</u>			
Q.1	(a) (b)	9	10D (0, 4, 6, 8, 10) 15D (0, 4, 8, 12, 15)		Q.7	(a)	(i) (ii)	5C* (0, 2, 4, 5) 5C* (0, 2, 4, 5)	
				25		(b)	(i)	10D (0, 4, 6, 8, 10)	
						(c)	(ii) (i)	10D* (0, 4, 6, 8, 10) 5C* (0, 2, 4, 5)	
Q.2	(a)	(i)	5C (0, 2, 4, 5)			(•)	(ii)	5C* (0, 2, 4, 5)	
		(ii)	5B (0, 2, 5)		o		(iii)	10D* (0, 4, 6, 8, 10)	
<u></u>	(b)	_	15D (0, 4, 8, 12, 15)	25					50
				20					
Q.3	(a)	(i)	5C* (0, 2, 4, 5)		Q.8	(a)	(i)	10D (0, 4, 6, 8, 10)	
		(ii)	5C* (0, 2, 4, 5)			<i>(</i>) \	(ii)	10D (0, 4, 6, 8, 10)	
	(b)	(iii)	5C* (0, 2, 4, 5) 10D (0, 4, 6, 8, 10)			(b)	(i) (ii)	10D (0, 4, 6, 8, 10) 5D (0, 2, 3, 4, 5)	
	(0)		100 (0, 1, 0, 0, 10)	25		(c)	(11)	15D (0, 4, 8, 12, 15)	
									50
Q.4	(a)	(i)	10D (0, 4, 6, 8, 10)						
	(1.)	(ii)	5C (0, 2, 4, 5)		0.0				
-	(b)		10D (0, 4, 6, 8, 10)	25	Q.9	(a)	(i) (ii)	5C* (0, 2, 4, 5) 10D* (0, 4, 6, 8, 10)	
				AL J			(iii)	$5C^*(0, 2, 4, 5)$	
						(b)	(i)	5C (0, 2, 4, 5)	
Q.5	(a)		5D (0, 2, 3, 4, 5)				(ii)	5D (0, 2, 3, 4, 5)	
	(b)	(i) (ii)	5D (0, 2, 3, 4, 5) 5C (0, 2, 4, 5)				(iii) (iv)	5C(0, 2, 4, 5)	
	(c)	(11)	$10C^*(0, 4, 7, 10)$				(\mathbf{v})	10D (0, 4, 6, 8, 10) 5D (0, 2, 3, 4, 5)	
				25					50
Q.6	(a)	(i)	5C* (0, 2, 4, 5)						
		(ii)	$5D^*(0, 2, 3, 4, 5)$						
	(b)	(i) (ii)	5C (0, 2, 4, 5) 10D* (0, 4, 6, 8, 10)						
		(11)	100 (0, 7, 0, 0, 10)	25					

Current Marking Scheme

Assumptions about these marking schemes on the basis of past SEC marking schemes should be avoided. While the underlying assessment principles remain the same, the exact details of the marking of a particular type of question may vary from a similar question asked by the SEC in previous years in accordance with the contribution of that question to the overall examination in the current year. In setting these marking schemes, we have strived to determine how best to ensure the fair and accurate assessment of students' work and to ensure consistency in the standard of assessment from year to year. Therefore, aspects of the structure, detail and application of the marking schemes for these examinations are subject to change from past SEC marking schemes and from one year to the next without notice.

Copyright

All rights reserved. This marking scheme and corresponding paper(s) are protected by Irish (EU) copyright law. Reproduction and distribution of these materials or any portion thereof without the written permission of the publisher is prohibited except for the immediate use within a classroom.

Pre-Leaving Certificate Examination, 2020

Mathematics

Higher Level – Paper 2 Marking Scheme (300 marks)

General Instructions

There are two sections in this examination paper.

Section A	Concepts and Skills	150 marks	6 questions
Section B	Contexts and Applications	150 marks	3 questions

Answer all nine questions.

Marks may be lost if answers do not include relevant supporting work.

Marks may be lost if answers do not include the appropriate units of measurement, where relevant.

Marks may be lost if answers are not given in simplest form, where relevant.

Section A

Concepts and Skills

Answer all six questions from this section.

Question 1

(25 marks)

150 marks

2020 LC Maths [HL] - Paper 2

The points A(-2, -3), B(4, 9) and C(-4, 3) are shown in the diagram below.

Find the equation of the line through the midpoint of AB which is perpendicular to AB. 1(a)

Find the equation of the lin	e through the midpoi	int of A	B which	is pe	rpendicular to AB. (1)	0D)
	Midpoint of [AB]		$\left(\frac{x_1+2}{2}\right)$	$\frac{x_2}{2}, \frac{y_1}{2}$	$\left(\frac{1+y_2}{2}\right)$	
		=	$\left(\frac{-2+1}{2}\right)$	4, -	$\frac{3+9}{2}$	
		=	(1, 3)			
	Slope of [AB]	=	$y_2 - y_2$			
			$x_2 - x_2$			
			9 - (- 4 - (-	-3) -2)		
		Ŧ	12 6			
		=	2			
\Rightarrow	\perp slope of [AB]		1			
	Equation of 1 bisect	or:				
	Point (1, 3), $m = -\frac{1}{2}$	Ţ				
	$y - y_1$)#	m(x -	(x_1)		
\Rightarrow	y - 3	=	$m(x - \frac{1}{2}(x - \frac{1}{2}))$	- 1)		
\Rightarrow	2(y-3)		-1(x -			
	$\frac{2y-6}{x+2y}$	-	-x+1	×.		
	x + 2y	: ::::	7)		
Scale 10D (0, 4, 6, 8, 10)	Low partial credit:	(4 mar	ks)		Any correct relevant step, <i>e.g.</i> writes dow formula for \mathbb{O} midpoint of a line segme <u>and/or</u> \mathbb{O} formula for the slope of a line with some correct substitution <u>and stops</u> <u>or</u> continues incorrectly.	nt
					Finds correct midpoint or slope of [AB]	J.
	Mid partial credit:	(6 marl	<s)< th=""><th></th><th>Finds \bigcirc midpoint and slope of [AB] or \bigcirc slope and \bot slope of [AB] correctly, but fails to progress.</th><th></th></s)<>		Finds \bigcirc midpoint and slope of [AB] or \bigcirc slope and \bot slope of [AB] correctly, but fails to progress.	
	High partial credit:	(8 mai	·ks)		Finds correct midpoint and \perp slope of $[AB]$ with some correct substitution into the formula for the equation of a limbut fails to finish or finishes incorrectly.	ie,
						-

Page 50 of 95

\$1

de.

Question 1 (cont'd.)

1

100

		(a) to find the co-ordi	,			e triangle Ab	C.	(15
	D€	Midpoint of [AC]	$=$ $\left(\frac{x_1}{x_1}\right)$	$\frac{x_2}{2}, \frac{y}{2}$	$\left(\frac{1+y_2}{2}\right)$			
			= (-2	+ (4)	$\frac{-3+3}{2}$			
			= (-3,	0)	2)			
		Slope of [AC]						
			x ₂ - 3 -					
			-4	(-3)				
			$= \frac{6}{-3}$					
			= 3					
	\Rightarrow	\perp slope of [AC]	$= \frac{1}{3}$					
		Equation of Lbisec	tor:					
		Point (-3, 0), $m = -\frac{1}{2}$						
		$y - y_1$	$= m(x)$ $= \frac{1}{3}(x)$	$(x - x_1)$				
	\Rightarrow	<i>y</i> – 0	$=$ $\frac{1}{3}(x)$	- (-3))				
	$\stackrel{\Rightarrow}{\rightarrow}$	3y x-3y	= x + 3 = -3					
		Point of intersection) actor:				
		x + 2y	= 7				part (a)	
	\Rightarrow	$\frac{x-3y}{5y}$	= -3 = 10					
	\Rightarrow	y	2					
	\Rightarrow	x + 2y $x + 2(2)$	= 7 = 7	<u>or</u>	\Rightarrow	$\begin{array}{l} x - 3y \\ x - 3(2) \\ x \end{array}$		-3
	\Rightarrow	x	= 7-	4	\Rightarrow	x		-3+6
	⇒	circumcentre	= (3, 2)				_	3
Scale 15D (0	4, 8, 12, 15)	Low partial credit	: (4 marks)	12		rect relevant : centre = poir		
					perpend	icular bisecte	ors' <u>or si</u>	<u>nilar</u>
					Finds co	<u>s or</u> continue rrect midpoin id stops or co	nt <u>or</u> slop	e of [AB] o
		Mid partial credit:	(8 marks)		Finds eq bisector progress	uation of a l of [<u></u>] <u>or</u> [ine of per BC], bu	rpendicular t fails to
		High partial credit	: (12 marks)		<u>and</u> solv (x <u>or</u> y),	vo correct pe es equations but fails to fin other variabl	to find o nd <u>or</u> find	ne variable
		Alternative s	olution:					
		Midpoint of	[BC] = (0, 6)	; slope c	f[BC] -	$\frac{3}{4}$; \pm slope of)[<i>BC</i>]=	

ŝ,

Question 2

The circle s has centre C(7, -8) and passes through the point P(2, -2).

F

2(a) (i) Find the equation of circle s.

0

r, radius of S:

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(7 - 2)^2 + (-8 - (-2))^2}$
= $\sqrt{(5)^2 + (-6)^2}$
= $\sqrt{25 + 36}$
= $\sqrt{61}$

General equation of a circle:

s: $(x - h)^2 + (y - k)^2 = r^2$ with centre (h, k)

s:
$$(x-7)^{2} + (y+8)^{2} = (\sqrt{61})^{2}$$
$$(x-7)^{2} + (y+8)^{2} = 61$$
$$\frac{0!}{x^{2}} + y^{2} - 14x + 16 + 52 = 0$$

<u>or</u>

0

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

c - 52

С

C(7, -8), centre of s: General equation of a circle: $s: x^2 + y^2 + 2gx + 2fy + c = 0$ with centre (-g, -f) $s: x^2 + y^2 + 2(-7)x + 2(8)y + c = 0$ $x^2 + y^2 - 14x + 16y + c = 0$ Circle s passes through the point P(2, -2) P(2, -2) is on circle s $(2)^2 + (-2)^2 - 14(2) + 16(-2) + c = 0$ 4 + 4 - 28 - 32 + c = 0

 \Rightarrow Scale 5C (0, 2, 4, 5)

Low partial credit: (2 marks)		Any correct relevant step, <i>e.g.</i> writes down distance formula [method 1] <u>or</u> general equation of a circle [method 2] with some correct substitution <u>and stops</u> <u>or</u> continues incorrectly.
	100	Finds correct radius [method 0] and stop or continues incorrectly.
ia.	-	Finds correct equation of s in terms of c, i.e. $x^2 + y^2 - 14x + 16y + c = 0$ [method 2] and stops or continues incorrectly.
High partial credit: (4 marks)		Finds correct radius and the equation of a circle [method 0], but with one sign error, e.g. $(x + 7)^2 + (y - 8)^2 = 61$ or $(x - 7)^2 + (y + 8)^2 = 61$.
) H	Finds the equation of a circle [method Θ but with one sign error, e.g. $x^2 + y^2 + 14x + 16y + 52 = 0$ or $x^2 + y^2 - 14x - 16y + 52 = 0$.

0

52

_

(5C)

(25 marks)

2(a) (cont'd.)

(ii) Q is the point on the circle s that is closest to the x-axis. Find, in surd form, the co-ordinates of Q.

TOREST.

18

Question 2 (cont'd.)

2020.11 17/20_MS 54/26

The point R is also on the circle s. The length of the chord PR is 10 units. The diagram shows R_1 and R_2 , the two possible positions of R. 2(b) Find the possible equations of *PR*.

he possible equations of *PR*.
0 Distance of line from centre *C* to *PR*
Using Pythagoras' theorem:

$$|OC|^2 = |OP|^2 = |OP|^2$$

 $|OP| = \frac{1}{2}|PR|$
 $= \frac{1}{2}|10|$
 $= 5$
 $\Rightarrow |OC|^2 = (\sqrt{61})^2 - (5)^2$
 $= 36$
0 Equation of *PR*
 $y - y_1$ $= m(x - x_1)$
 $slope m, point (2, -2)$
 $\Rightarrow y + 2$ $= m(x - x_1)$
 $slope m, point (2, -2)$
 $\Rightarrow y + 2$ $= m(x - 2)$
 $\Rightarrow y + 2$ $= m(x - 2)$
 $\Rightarrow y + 2$ $= m(x - 2)$
 $\Rightarrow mx - y - (2m + 2) = 0$
6 $| 1 \text{ distance } | \frac{|m(7) + (-1)(-8) + (-2m - 2)|}{\sqrt{m^2 + 1^2}}$
 $= \frac{|5m + 6|}{\sqrt{m^2 + 1}}$
 $\Rightarrow 6(\sqrt{m^2 + 1}) = |5m + 6|$
 $\Rightarrow 36(m^2 + 1) = 25m^2 + 60m + 36$
 $\Rightarrow 36m^2 + 36$ $= 25m^2 + 60m + 36$
 $\Rightarrow 11m^2 - 60m = 0$
 $\Rightarrow m = \frac{60}{11}$
6 Possible equations *PR*
PR; slope $\frac{60}{11}$, point (2, -2)
 $\Rightarrow y - (-2) = \frac{60}{11}(x - 2)$
 $\Rightarrow (11m - 60) = 0$
 $\Rightarrow (11m$

 d_{N}

Question 2 (cont'd.)

44

4

2(b) (cont'd.)

Scale 15D (0, 4, 8, 12, 15

25

Low partial credit: (4 marks)		Any correct relevant step, <i>e.g.</i> sketches diagram with chord <i>PR</i> bisected (at <i>O</i>) <u>or</u> some correct use of formula for Pythagoras' theorem to find $ OC $ and stops <u>or</u> continues incorrectly. Finds correct value of $ OC $ and stops <u>or</u> continues incorrectly. Writes down correct formula for the equation of a line <i>PR</i> with some correct substitution of (2, -2) and stops <u>or</u> continues incorrectly. Writes down correct formula for the perpendicular distance from a line with some correct substitution of (7, -8) and stops <u>or</u> continues incorrectly.
Mid partial credit: (8 marks)		Equates perpendicular distance formula correctly, <i>i.e.</i> $6 = \frac{ 5m + 6 }{\sqrt{m^2 + 1}}$ or similar, but fails to progress
		but fails to progress.
High partial credit: (12 marks)	-	Finds both slopes correctly, but fails to find $\underline{\text{or}}$ finds incorrect possible equations of PR .

44

2020 LC Maths [HL] - Paper 2

(5C*)

- 3(a) The probability that a certain rugby player scores from each place kick he attempts is 85%. During a particular match, he takes five place kicks. Find, correct to four decimal places, the probability that:
 - (i) He scores on exactly three of the five attempts;

Scale 5C* (0, 2, 4

P(scores exactly three of the five attempts)

Bernoulli trial p(probability of score) = 0.85 q(probability of miss) = 1 - 0.85 = 0.15 n(sample size) = 5 $P(k) = {\binom{n}{k}}p^kq^{n-k}$ $\Rightarrow P(\text{exactly 3 scores}) = {\binom{5}{3}}(0.85)^3(0.15)^2$ $= \frac{5!}{2!3!}(0.85)^3(0.15)^2$ $= \frac{5 \times 4}{2 \times 1}(0.614125)(0.0225)$ = 0.138178 = 0.1382 Low partial credit: (2 marks) - Any correct relevant step, <i>e.g.</i> writes down correct explanation, <i>i.e.</i> P(scores exactly three of the five attempts) = P(S, S, S, M, M - in any order) and stops or continues incorrectly. = Finds p(score) = 0.85 and q(miss) = 0.15 with binomial formula $P(k) = {\binom{n}{k}}p^kq^{n-k}$ = and stops or continues incorrectly. High partial credit: (4 marks) = Finds $P(\text{exactly 3}) = {\binom{5}{3}}(0.85)^3(0.15)^2$, but fails to evaluate or evaluates incorrectly.			=	P(S, S, S, M, M - in any order)
$\Rightarrow p(\text{probability of score}) = 0.85$ $= 1-0.85$ $= 0.15$ $n(\text{sample size}) = 5$ $P(k) = \binom{n}{k} p^k q^{n-k}$ $\Rightarrow P(\text{exactly 3 scores}) = \binom{5}{3} (0.85)^3 (0.15)^2$ $= \frac{5!}{2!3!} (0.85)^3 (0.15)^2$ $= \frac{5 \times 4}{2 \times 1} (0.614125) (0.0225)$ $= 0.138178$		Bernoulli trial		
$\Rightarrow q(probability of miss) = 1-0.85$ = 0.15 n(sample size) = 5 $P(k) = {n \choose k} p^k q^{n-k}$ $\Rightarrow P(exactly 3 scores) = {5 \choose 3} (0.85)^3 (0.15)^2$ $= \frac{5!}{2!3!} (0.85)^3 (0.15)^2$ $= \frac{5 \times 4}{2 \times 1} (0.614125) (0.0225)$ = 0.138178 = 0.1382 Low partial credit: (2 marks) - Any correct relevant step, <i>e.g.</i> writes down correct explanation, <i>i.e.</i> P(scores exactly three of the five attempts) = P(S, S, S, M, M - in any order) and stops or continues incorrectly. = Finds p(score) = 0.85 and q(miss) = 0.15 with binomial formula $P(k) = {n \choose k} p^k q^{n-k}$ = and stops or continues incorrectly. High partial credit: (4 marks) = Finds $P(exactly 3) = {5 \choose 3} (0.85)^3 (0.15)^2$, but fails to evaluate or evaluates			=	0.85
$= 0.15$ $n(\text{sample size}) = 5$ $P(k) = \binom{n}{k} p^k q^{n-k}$ $\Rightarrow P(\text{exactly 3 scores}) = \binom{5}{3} (0.85)^3 (0.15)^2$ $= \frac{5!}{2!3!} (0.85)^3 (0.15)^2$ $= \frac{5 \times 4}{2 \times 1} (0.614125) (0.0225)$ $= 0.138178$ $= 0.1382$ 4,5) Low partial credit: (2 marks) - Any correct relevant step, <i>e.g.</i> writes down correct explanation, <i>i.e.</i> P(scores exactly three of the five attempts) = P(S, S, S, M, M, -in any order) and stops or continues incorrectly. $= Finds p(score) = 0.85 and q(miss) = 0.15$ $= \frac{and stops or continues incorrectly.}{Some correct substitution into binomial formula (not stated) and stops or continues incorrectly.$ $= Finds P(\text{exactly 3}) = \binom{5}{3} (0.85)^3 (0.15)^2, \text{but fails to evaluate or evaluates}$	\Rightarrow		=	
$P(k) = \binom{n}{k} p^{k} q^{n-k}$ $\Rightarrow P(\text{exactly 3 scores}) = \binom{5}{3} (0.85)^{3} (0.15)^{2}$ $= \frac{5!}{2!3!} (0.85)^{3} (0.15)^{2}$ $= \frac{5 \times 4}{2 \times 1} (0.614125) (0.0225)$ $= 0.138178$ $= 0.1382$ 4,5) Low partial credit: (2 marks) - Any correct relevant step, <i>e.g.</i> writes down correct explanation, <i>i.e.</i> P(scores exactly three of the five attempts) = P(S, S, S, M, M - in any order) and stops or continues incorrectly. $= Finds p(score) = 0.85 \text{ and } q(miss) = 0.15$ $with binomial formula P(k) = \binom{n}{k} p^{k} q^{n-k} = \frac{and stops or continues incorrectly.}{Some correct substitution into binomial formula (not stated) and stops or continues incorrectly. High partial credit: (4 marks) = Finds P(exactly 3) = \binom{5}{3} (0.85)^{3} (0.15)^{2}, but fails to evaluate or evaluates$			=	
$\Rightarrow P(\text{exactly 3 scores}) = {\binom{5}{3}} (0.85)^3 (0.15)^2$ $= \frac{5!}{2!3!} (0.85)^3 (0.15)^2$ $= \frac{5 \times 4}{2 \times 1} (0.614125) (0.0225)$ $= 0.138178$ $= 0.138178$ $= 0.1382$ $\text{Low partial credit: (2 marks)} - \text{Any correct relevant step, e.g. writes down correct explanation, i.e. P(scores exactly three of the five attempts) = P(S, S, S, M, M - in any order) and stops or continues incorrectly.$ $= \text{Finds } p(\text{score}) = 0.85 \text{ and } q(\text{miss}) = 0.15$ $= \frac{\text{and stops or continues incorrectly.}}{\text{Some correct substitution into binomial formula P(k) = \binom{n}{k} p^k q^{n-k} = \frac{\text{and stops or continues incorrectly.}}{\text{Some correct substitution into binomial formula (not stated) and stops or continues incorrectly.} = \text{Finds } P(\text{exactly 3}) = \binom{5}{3} (0.85)^3 (0.15)^2, = \text{Finds } P(\text{exactly 3}) = \binom{5}{3} (0.85)^3 (0.15)^2, = \text{Finds } to evaluate or evaluates$		n(sample size)	=	5
$= \frac{5!}{2! 3!} (0.85)^3 (0.15)^2$ $= \frac{5 \times 4}{2 \times 1} (0.614125)(0.0225)$ $= 0.138178$ $= 0.1382$ 4, 5) Low partial credit: (2 marks) - Any correct relevant step, <i>e.g.</i> writes down correct explanation, <i>i.e.</i> P(scores exactly three of the five attempts) = P(S, S, S, M, M - in any order) and stops or continues incorrectly. - Finds p(score) = 0.85 and q(miss) = 0.15 with binomial formula $P(k) = {n \choose k} p^k q^{n-k}$ and stops or continues incorrectly. - Some correct substitution into binomial formula $n to binomial$ formula $(not stated)$ and stops or continues incorrectly. High partial credit: (4 marks) = Finds P(exactly 3) = ${5 \choose 3} (0.85)^3 (0.15)^2$, but fails to evaluate or evaluates		P(k)		$\binom{n}{k} p^k q^{n-k}$
$= \frac{5 \times 4}{2 \times 1} (0.614125)(0.0225)$ $= 0.138178$ $= 0.1382$ 4,5) Low partial credit: (2 marks) - Any correct relevant step, <i>e.g.</i> writes down correct explanation, <i>i.e.</i> P(scores exactly three of the five attempts) = P(S, S, S, M, M - in any order) and stops or continues incorrectly. $= Finds p (score) = 0.85 \text{ and } q (miss) = 0.15$ with binomial formula $P(k) = \binom{n}{k} p^k q^{n-k}$ and stops of continues incorrectly. $= Some correct substitution into binomial formula (not stated) and stops or continues incorrectly. High partial credit: (4 marks) = Finds P(exactly 3) = \binom{5}{3} (0.85)^3 (0.15)^2, but fails to evaluate or evaluates$	\Rightarrow	P(exactly 3 scores)	1	$\binom{5}{3}(0.85)^3(0.15)^2$
4,5) Low partial credit: (2 marks) - Any correct relevant step, <i>e.g.</i> writes down correct explanation, <i>i.e.</i> P(scores exactly three of the five attempts) = $P(S, S, S, M, M - in any order)$ and stops or continues incorrectly. - Finds $p(score) = 0.85$ and $q(miss) = 0.15$ with binomial formula $P(k) = {n \choose k} p^k q^{n-k}$ - and stops or continues incorrectly. Some correct substitution into binomial formula (not stated) and stops or continues incorrectly. High partial credit: (4 marks) - Finds $P(exactly 3) = {5 \choose 3} (0.85)^3 (0.15)^2$, but fails to evaluate or evaluates				$\frac{5!}{2!3!}(0.85)^3(0.15)^2$
4.5) Low partial credit: (2 marks) - Any correct relevant step, e.g. writes down correct explanation, <i>i.e.</i> $P(\text{scores exactly three of the five attempts}) = P(\text{S}, \text{S}, \text{S}, \text{M}, \text{M} - \text{in any order}) and stops or continues incorrectly Finds p(\text{score}) = 0.85 \text{ and } q(\text{miss}) = 0.15with binomial formula P(k) = {n \choose k} p^k q^{n-k}and stops or continues incorrectly.Some correct substitution into binomial formula (not stated) and stops or continues incorrectly.High partial credit: (4 marks) - Finds P(\text{exactly 3}) = {5 \choose 3} (0.85)^3 (0.15)^2, but fails to evaluate or evaluates$				$\frac{5 \times 4}{2 \times 1} (0.614125)(0.0225)$
4.5) Low partial credit: (2 marks) - Any correct relevant step, e.g. writes down correct explanation, <i>i.e.</i> $P(\text{scores exactly three of the five attempts}) = P(\text{S}, \text{S}, \text{S}, \text{M}, \text{M} - \text{in any order}) and stops or continues incorrectly Finds p(\text{score}) = 0.85 \text{ and } q(\text{miss}) = 0.15with binomial formula P(k) = {n \choose k} p^k q^{n-k}and stops or continues incorrectly.Some correct substitution into binomial formula (not stated) and stops or continues incorrectly.High partial credit: (4 marks) - Finds P(\text{exactly 3}) = {5 \choose 3} (0.85)^3 (0.15)^2, but fails to evaluate or evaluates$				0.138178
correct explanation, <i>i.e.</i> $P(\text{scores exactly})$ three of the five attempts) = $P(S, S, S, M, M)$ - in any order) and stops or continues incorrectly.Finds $p(\text{score}) = 0.85$ and $q(\text{miss}) = 0.15$ with binomial formula $P(k) = \binom{n}{k} p^k q^{n-k}$ and stops or continues incorrectly.and stops or continues incorrectly.Some correct substitution into binomial formula (not stated) and stops or continues incorrectly.High partial credit: (4 marks)Finds $P(\text{exactly 3}) = \binom{5}{3}(0.85)^3(0.15)^2$, but fails to evaluate or evaluates			12	
correct explanation, <i>i.e.</i> $P(\text{scores exactly})$ three of the five attempts) = $P(S, S, S, M, M)$ - in any order) and stops or continues incorrectly.Finds $p(\text{score}) = 0.85$ and $q(\text{miss}) = 0.15$ with binomial formula $P(k) = \binom{n}{k} p^k q^{n-k}$ and stops or continues incorrectly.and stops or continues incorrectly.Some correct substitution into binomial formula (not stated) and stops or continues incorrectly.High partial credit: (4 marks)Finds $P(\text{exactly 3}) = \binom{5}{3}(0.85)^3(0.15)^2$, but fails to evaluate or evaluates	-	r	6	
with binomial formula $P(k) = \binom{n}{k} p^k q^{n-k}$ and stops or continues incorrectly.Some correct substitution into binomial formula (not stated) and stops or continues incorrectly.High partial credit: (4 marks)Finds $P(exactly 3) = \binom{5}{3} (0.85)^3 (0.15)^2$, but fails to evaluate or evaluates	4, 5)	Low partial credit: (2 mar	ks)	correct explanation, <i>i.e.</i> $P(\text{scores exactly})$ three of the five attempts) = $P(S, S, S, M, M)$ - in any order) <u>and stops or</u> continues incorrectly.
$= \frac{5}{3}(0.85)^{3}(0.15)^{2},$ but fails to evaluate or evaluates				
Finds $P(\text{exactly 3}) = \begin{bmatrix} 3\\ 3 \end{bmatrix} (0.85)^3 (0.15)^2$, but fails to evaluate <u>or</u> evaluates				 Some correct substitution into binomial formula (<u>not</u> stated) and stops or
		High partial credit: (4 mar	·ks)	Finds $P(\text{exactly 3}) = {5 \choose 3} (0.85)^3 (0.15)^2$,

Deduct 1 mark off correct answer only if final answer is incorrectly rounded <u>or</u> is not rounded - apply deduction only once to each section (a), (b), (c), *etc.* of question.

 $d_{\rm TL}^{*}$

Question 3 (cont'd.)

 $d_{\rm eff}$

÷.,

٩,

3(a)	(cont	'd.)			
	(ii)	He scores for the th	ird time on his fifth attemp	t;	(5C*)
			P(scores for 3rd time on .	5th atter =	npt) P(S, S, M, M - in any order) + P(S - 5th attempt)
		\Rightarrow	First 4 attempts p (probability of score) q (probability of miss) n (sample size) P(k)		$ \begin{array}{c} 0.85\\ 0.15\\ 4\\ \binom{n}{k}p^{k}q^{n-k} \end{array} $
		\Rightarrow	P(exactly 2 scores)		$\binom{4}{2}(0.85)^2(0.15)^2$
			Fifth attempt p (probability of score)	=	0.85
		\Rightarrow	P(scores for 3rd time on 5		$\binom{4}{2} (0.85)^2 (0.15)^2 \times 0.85$
					$\frac{4!}{2!2!}(0.85)^3(0.15)^2$
					$\frac{4 \times 3}{2 \times 1} (0.614125) (0.0225)$
			(0·082906 0·0829
	Scale	5C* (0, 2, 4, 5)	Low partial credit: (2 ma	urks)	 Any correct relevant step, e.g. writes down correct explanation, <i>i.e.</i> P(S, S, M, M in any order) + P(S - on 5th attempt) and stops or continues incorrectly.
					- Finds $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ or $(0.85)^2(0.15)^2$ and stops
			High partial credit: (4 ma	arks)	<u>or</u> continues incorrectly. - Finds correct probability using bominal formula, <i>i.e.</i> $\binom{4}{2}(0.85)^2(0.15)^2 \times 0.85$, but fails to evaluate <u>or</u> evaluates incorrectly.
			* Deduct 1 mark off	correct a	answer only if final answer is incorrectly rounded

 $_{\rm eff}$

Deduct 1 mark off correct answer only if final answer is incorrectly rounded <u>or</u> is not rounded - apply deduction only once to each section (a), (b), (c), *etc.* of question.

3(a) (cont'd.)

Scale 5C* (0, 2, 4,

(iii) He scores on at least three attempts during the match.

(5C*)

	P(scores on at least three attempts)				
		=	P(3 scores) + P(4 scores) + P(5 scores)		
	p (probability of score)	=	0.85		
\Rightarrow	q (probability of miss)	=	0.12		
	n(sample size)	=	4		
	P(k)	=	$\binom{n}{k} p^k q^{n-k}$		

 \Rightarrow *P*(scores on at least three attempts)

$$= \begin{pmatrix} 5\\ 3 \end{pmatrix} (0.85)^3 (0.15)^2 + \begin{pmatrix} 5\\ 4 \end{pmatrix} (0.85)^4 (0.15)^1 + \\ + \begin{pmatrix} 5\\ 5 \end{pmatrix} (0.85)^5 (0.15)^0$$

= 0.138178... + 0.391504... + 0.443705...
= 0.973388...
= 0.9734

- Accept students' answers from part (a)(i) if not oversimplified.

	-
Low partial credit: (2 marks)	Any correct relevant step, <i>e.g.</i> writes down correct explanation, <i>i.e.</i> $P(\text{at least } 3 \text{ scores})$ = $P(3 \text{ scores}) + P(4 \text{ scores}) + P(5 \text{ scores})$ and stops or continues incorrectly. Finds one correct probability value, <i>i.e.</i> P(3 scores) [accept answer from part (i)] P(4 scores) or $P(5 scores)$ and stops or continues incorrectly.
High partial credit: (4 marks)	Finds correct probability using bominal formula, <i>i.e.</i> $\binom{5}{3}(0.85)^3(0.15)^2 +$
	$\binom{5}{4}(0.85)^4(0.15)^1 + \binom{5}{5}(0.85)^5(0.15)^0,$
	but fails to evaluate <u>or</u> evaluates incorrectly.

Deduct 1 mark off correct answer only if final answer is incorrectly rounded <u>or</u> is not rounded - apply deduction only once to each section (a), (b), (c), *etc*. of question.

3(b) A, B and C are three events. A and B are independent. $P(A) = \frac{1}{3}, P(A \cap B) = \frac{1}{12}, P(C) = \frac{1}{2} \text{ and } P(B \cup C) = \frac{5}{8}.$

Find $P(B \cap C)$ and investigate whether events *B* and *C* are mutually exclusive.

$$A \text{ and } B \text{ independent events}$$

$$\Rightarrow P(A \cap B) = P(A) \times P(B)$$

$$\Rightarrow \frac{1}{12} = \frac{1}{3} \times P(B)$$

$$\Rightarrow P(B) = \frac{3}{12}$$

$$= \frac{1}{4}$$

$$P(B \cup C) = P(B) + P(C) - P(B \cap C)$$

$$\Rightarrow \frac{5}{8} = \frac{1}{4} + \frac{1}{2} - P(B \cap C)$$

$$\Rightarrow P(B \cap C) = \frac{1}{4} + \frac{1}{2} - \frac{5}{8}$$

$$= \frac{2 + 4 - 5}{8}$$

$$P(B \cap C) \neq 0$$

B and C are not mutually exclusive

Scale 10D (0, 4, 6, 8, 10) Low partial credit: (4 marks) Any correct relevant step, e.g. writes down $P(A \cap B) = P(A) \times P(B)$ as A and B independent' <u>or</u> ' $P(B \cup C) = P(B) + P(C)$ $-P(B \cap C)$ ' and stops or continues incorrectly. Draws Venn diagram with some correct inputs. Substitutes fully into $P(A \cap B)$, *i.e.* $\frac{1}{12} = \frac{1}{3} \times P(B)$ <u>or</u> finds $P(B) = \frac{1}{4}$ and stops or continues incorrectly. Mid partial credit: (6 marks) Substitutes fully into $P(B \cup C)$, *i.e.* $\frac{5}{8} = \frac{1}{4} + \frac{1}{2} - P(B \cap C)$, but fails to evaluate or evaluates incorrectly. High partial credit: (8 marks) Finds $P(B \cap C) = \frac{1}{8}$, but fails to put answer in correct context, i.e. B and C are not mutually exclusive.

Question 4

tion 4						(25 marks)
4(a)	Let $\sin A = \frac{1}{\sqrt{10}}$, where 0	$< A < \frac{\pi}{4}$				
	(i) Find sin 2 <i>A</i> and cos	$32A$ in the form \cdot	$\frac{p}{a}$, where p	$q \in \mathbb{N}.$		(10D)
		sin A	-	$\frac{1}{\sqrt{10}}$	$\sqrt{10}$	1
		Using Pythago		•	3	
		Adj ²	=	$(\sqrt{10})^2 - (1)^2 - $) ²	
	\Rightarrow	Adj	=	3		
	\Rightarrow	cos A	=	$\frac{3}{\sqrt{10}}$		
	0	sin 2A				
		$\sin 2A$	1	$2\sin A\cos A$		
			=	$-2(\frac{1}{\sqrt{10}})(\frac{3}{\sqrt{10}})$	$\left(\frac{1}{0}\right)$	
			1	6		
27			\langle	$\frac{10}{\frac{3}{5}}$		³⁴ :: 2
	Ø	cos2%		5		
		$\cos 2A$	=	$\cos^2 A - \sin^2 A$		
			=	$(\frac{3}{\sqrt{10}})(\frac{3}{\sqrt{10}})$	$(\frac{1}{\sqrt{10}})(\frac{1}{\sqrt{10}})$	
				9 1	VIO 410	
				10 10		
				8 10 4		
			\leq	$\frac{4}{5}$		
	Scale 10D (0, 4, 6, 8, 10)	Low partial c	eredit: (4 ma	arks) —	Any correct relevant st	
		T			right-angled triangle v correctly labelled in r	,
					and stops or continues	s incorrectly.
					Some correct substitute for Pythagoras' theorem	
					and stops or continues Writes down $\sin 2A =$	s incorrectly.
					$\cos 2A = \cos^2 A - \sin^2 A$	A and stops
					or continues incorrect Some correct substitut	
	*				(not stated) for $\sin 2A$	

		$\cos 2A = \cos^2 A - \sin^2 A$ and stops or continues incorrectly. Some correct substitution into formula (<u>not</u> stated) for $\sin 2A$ <u>and/or</u> $\cos 2A$ <u>and stops or</u> continues incorrectly.
Mid partial credit: (6 marks)	2	Finds $ Adj = 3$ and hence $\cos A = \frac{3}{\sqrt{10}}$,
		but fails to progress.
High partial credit: (8 marks)	-	Finds correct value of sin2A or cos2A but fails to find or finds incorrectly value of other term.

2020.1 L 17/20 MS 50/96

Page 60 of 95

2020 LC Maths [HL] - Paper 2

2020 LC Maths [HL] - Paper 2

 $d^{\prime} n$

 $\phi =$

Question 4 (cont'd.)

- **4(a)** (cont'd.)
 - (ii) By expressing $\sin 3A$ in the form $\sin (2A + A)$, find the exact value of $\sin 3A$.

-

Give your answer in the form
$$\frac{a\sqrt{b}}{c}$$
, where $a, b, c \in \mathbb{N}$. (5C)

\Rightarrow	sin(A + B) $ sin(2A + A)$	=	$\sin A \cos B + \cos A \sin B$ $\sin 2A \cos A + \cos 2A \sin A$	
\Rightarrow	sin 3A		$\sin 2A\cos A + \cos 2A\sin A$	
			$(\frac{3}{5})(\frac{3}{\sqrt{10}}) + (\frac{4}{5})(\frac{1}{\sqrt{10}})$	part (a)(i)
			$\frac{9}{5\sqrt{10}} + \frac{4}{5\sqrt{10}}$	
		-	$\frac{13}{5\sqrt{10}}$	
			$\frac{13}{5\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}}$	
	\langle	=	$\frac{13\sqrt{10}}{50}$	

 Accept students 	' answers	from	part	(a)(i)	if not	oversimplified.
-------------------------------------	-----------	------	------	--------	--------	-----------------

	Accept students answers from part (a)(t) in not oversimplified.						
Scale 5C (0, 2, 4, 5)	Low partial credit: (2 marks)		Any correct relevant step, <i>e.g.</i> writes down correct expansion of $sin(A + B)$ or sin(2A + A) and stops or continues incorrectly. Some correct substitution into formula (not stated) for $sin 3A$ and stops or continues incorrectly.				
	High partial credit: (4 marks)	-	Substitutes fully into $\sin 3A$, <i>i.e.</i> $\sin 3A = (\frac{3}{5})(\frac{3}{\sqrt{10}}) + (\frac{4}{5})(\frac{1}{\sqrt{10}})$, but				
			fails to evaluate <u>or</u> evaluates incorrectly. Final answer correct, but not given in required format.				

Ś

, exams

,

٩.

4(b) Express $2\cos^2 x + 3\sin x - 3 = 0$ as a quadratic equation in $\sin x$ and hence find all the values of x, where $0 \le x \le 2\pi$ and x is in radians.

(b)	Express $2\cos^2 x + 3\sin x - 3$ and hence find all the value				s. (10)
	2	$2\cos^2 x + 3\sin x - 3$		0	
	\Rightarrow	$\cos^2 x + \sin^2 x$ $\cos^2 x$	=	1 1 — si	$n^2 x$
	$ \begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \uparrow \\ \end{array} $	$2(1 - \sin^2 x) + 3\sin x - 2 - 2\sin^2 x + 3\sin x - 3$ $2\sin^2 x - 3\sin x + 1$ $(2\sin x - 1)(\sin x - 1)$	3 =	0 0 0	
	\Rightarrow	$\frac{2\sin x - 1}{\sin x - 1}$	_	0	
	\Rightarrow			1	≜ y
	\Rightarrow	$\sin x$		2	$\left(\begin{array}{c} \sin A \Pi \\ \cdot \\$
	\Rightarrow	X	_	sin ⁻¹ -	
			=	$\frac{\pi}{6}, \pi$	
2			=	$\frac{\pi}{6, 6}$	
	\Rightarrow	$(2\sin x - 1)(\sin x - 1)$		0	
	\Rightarrow	$\sin x - 1$	_	0	
	\Rightarrow	sin <i>x</i> x	==	1 sin ⁻¹ 1	
		~	= ($\frac{\pi}{2}$	
	=	Solution set	= [$\frac{\pi}{6}, \frac{\pi}{2},$	$\frac{5\pi}{6}$
Ć	Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4	marks)	_	Any correct relevant step, <i>e.g.</i> writes down $\cos^2 x + \sin^2 x = 1$ or $\cos^2 x = 1 - \sin^2 x$
				-	and stops or continues incorrectly. Attempts to form quadratic equation in sinx and stops or continues incorrectly.
		Mid partial credit: (6	marks)		Finds correct quadratic equation in $\sin x$, <i>i.e.</i> $2\sin^2 x - 3\sin x + 1 = 0$ or similar, but fails to progress.
		High partial credit: (8	marks)		Finds both values for sinx [ans. $\frac{1}{2}$ and 1]
					but fails to finish <u>or</u> finishes incorrectly, <i>i.e.</i> fails to find all corresponding values of x.
				-	Finds one value for $\sin x$ [ans. $\frac{1}{2}$ or 1]
					and all corresponding value(s) of x , but fails to find or finds incorrect other value

5(a) A bank issues a unique four-digit PIN code to customers to use with their debit or credit cards. The code is chosen at random from the digits 0 to 9, inclusive. A code cannot begin with zero but digits may be repeated. For example, 1 9 9 5 is a valid code.

Find the number of possible four-digit PIN codes in which no digit is repeated as a percentage of the total number of possible codes. Give your answer correct to one decimal place.

Total number of possible codes = $^{\textcircled{0}}9 \times ^{\textcircled{0}}10 \times ^{\textcircled{0}}10 \times ^{\textcircled{0}}10$ = 9,000

Number of possible codes with no repetition = ${}^{\textcircled{0}}9 \times {}^{\textcircled{0}}9 \times {}^{\textcircled{3}}8 \times {}^{\textcircled{0}}7$

 \Rightarrow % Codes with no repetition of total number of possible codes

$$= \frac{4,536}{9,000} \times \frac{100}{1}$$
$$= \frac{63}{125} \times \frac{100}{1}$$
$$= \frac{50.4\%}{100}$$

** ①, ②, ③, ④ signify the selection order of digits within the code.

Low partial credit: (2 marks)		Some work of merit, <i>e.g.</i> writes down partial list of possible correct codes [<i>e.g.</i> 1000, 1001, 1101, <i>etc.</i>] and stops. Finds Total number of possible codes = $10 \times 10 \times 10 \times 10 = 10,000 \text{ or Number}$ of possible codes with no repetition = $10 \times 9 \times 8 \times 7 = 5,040 \text{ and stops}$ or continues incorrectly.
Mid partial credit: (3 marks)	344	Finds correct Total number of possible codes [ans. 9,000] <u>or</u> correct Number of possible codes with no repetition [ans. 4,536], but fails to progress.
High partial credit: (4 marks)	27	Finds correct Total number of possible codes [ans. 9,000] <u>and</u> correct Number of possible codes ith no repetition [ans. 4,536], but fails to find <u>or</u> finds incorrect percentage.

Scale 5D (0, 2, 3, 4, 5)

2020-1 L.17/20- MS: 61/96

(5D)

(25 marks)

(5D)

Question 5 (cont'd.)

5(b)

How many different PIN codes which are even numbers greater than 3000 are possible? (i) Greater than 3,000 Starts with 3, 4, 5, 6, 7, 8, 9 \Rightarrow Ends with 0, 2, 4, 6, 8 Starts with 3, 5, 7, 9 Number of possible codes \Rightarrow $^{(1)}4 \times ^{(3)}8 \times ^{(4)}7 \times ^{(2)}5$ = 1.120 Starts with 4, 6, 8 \Rightarrow Number of possible codes $^{(1)}3 \times ^{(3)}8 \times ^{(4)}7 \times ^{(2)}4$ 672 \Rightarrow Total number of possible codes 1,120 + 6721,792 ④ signify the selection order of digits within the code. Scale 5D (0, 2, 3, 4, 5) Low partial credit: (2 marks) Some work of merit, e.g. writes down partial list of possible correct codes [e.g. 3000, 3002, 3004, etc.] and stops. Finds Number of possible codes starting with 3, 5, 7, $9 = {}^{\textcircled{0}}4 \times {}^{\textcircled{0}}9 \times {}^{\textcircled{0}}8 \times {}^{\textcircled{0}}5$ [ans. 1,440] or Number of possible codes

A PIN code in which no digit is repeated is issued to a customer.

-		,±	starting with 4, 6, $8 = {}^{\textcircled{0}}3 \times {}^{\textcircled{0}}9 \times {}^{\textcircled{0}}8 \times {}^{\textcircled{0}}4$ [ans, 1,296] and stops or continues incorrectly.
	Mid partial credit: (3 marks)		Finds correct Number of possible codes starting with 3, 5, 7, 9 [ans. 1,120] or correct Number of possible codes starting with 4, 6, 8 [ans. 672], but fails to progress.
	High partial credit: (4 marks)	-	Finds correct Number of possible codes starting with 3, 5, 7, 9 [ans. 1,120] and correct Number of possible codes starting with 4, 6, 8 [ans. 672], but fails to finish <u>or</u> finishes incorrectly.

DEB

(10C*)

ä

Question 5 (cont'd.)

5(c) Six students compare the months in which they celebrate their birthdays. Assuming that all months are equally likely, find the probability that no two students were born in the same month. Give your answer correct to four decimal places.

P(all born in different months of the year)

=	$\frac{12}{12} \times \frac{11}{12} \times 11$	$\frac{10}{12} \times$	9 12	$\times \frac{8}{12}$	$\times \frac{7}{12}$
	665,280	1 44	1 /4	12	12
	2,985,984				
	385				
	1,728				
=	0.222800				
\simeq	0.2288				

Scale 10C* (0, 4, 7, 10)

Low partial credit: (4 marks)		Any correct relevant step, <i>e.g.</i> writes down one <u>or</u> more correct probability <u>and stops</u> <u>or</u> continues incorrectly.
High partial credit: (7 marks)	লা	Finds P(all born in different months of the year) = $\frac{12}{12} \times \frac{11}{12} \times \frac{10}{12} \times \frac{9}{12} \times \frac{8}{12} \times \frac{7}{12}$, but fails to evaluate <u>or</u> evaluates incorrectly.

Deduct 1 mark off correct answer only if final answer is incorrectly rounded <u>or</u> is not rounded - apply deduction only once to each section (a), (b), (c), *etc*. of question.

DEB

- (cont'd.) 5(b)
 - Find the probability that all of the digits in the PIN code issued are in ascending order, (ii) pickanyy digits, and then (5C) way to sort in escending - 50 zero cantbe in the 4 at all e.g. 3469 or 2789.

Occurs once in every 4 digit combination Also, code can not begin with zero digit eliminated from all combinations

Number of possible codes in ascending order \Rightarrow

> 9 9! 5! 4! 126 =

Number of possible codes with no repetition

$$= 0.9 \times 0.9 \times 0.8 \times 0.7 = 4,536$$

... part (a)

P(all digits in ascending order) \Rightarrow

126 4,536 $\frac{1}{36}$ or 0.027777... or 0.0277

①, ②, ③, ④ signify the selection order of digits within the code. **

** Accept students' answers from part (a) if not oversimplified.

>	Low partial credit: (2 märks)	1 _	Some work of merit, <i>e.g.</i> writes down reason why zero is excluded <u>and/or</u> reason why only occurs once in every 4 digit combination <u>and stops</u> . Finds Number of possible codes in
			ascending order = $\begin{pmatrix} 10\\ 4 \end{pmatrix}$ [ans. 210]
		_	and stops or continues incorrectly. Writes Number of possible codes with no repetition [ans. 4,536] from part (a) and stops or continues incorrectly.
	High partial credit: (4 marks)	-	Finds correct Number of possible codes
			in ascending order = $\begin{pmatrix} 9\\4 \end{pmatrix}$ [ans. 126],
			but fails to finish or finishes incorrectly.

Scale 5C (0, 2, 4, 5)

2020 11.17/20 MS 66/96

⇒

 x_{5}

Question 6

€

d's

6(a) The lengths of the sides of the triangle *ABC* are 9 units, 12 units and 18 units, as shown in the diagram. Each side is divided into three segments of equal length.

 $d_{\mathcal{R}}$

(i) Find the perimeter of the shaded region in the diagram above.

ĸ

 $d_{\rm X}$

Perimeter

Scal	e 5C*	(0,	2,	4,	5)	
------	-------	-----	----	----	----	--

ų,

200		9
Low partial credit: (2 marks)		Any correct relevant step, <i>e.g.</i> writes down 'larger trianagle is an enlargement of the smaller triangle(s) with scale factor of 3' or similar and stops. Find correct lengths of 3 externals sides of shaded region [ans. $12/3 = 4$, $18/3 = 6$, 9/3 = 3,] and stops or continues incorrectly Find correct lengths of 1 internal sides of shaded region and stops or continues incorrectly.
High partial credit: (4 marks)	е 1917 1917	Find correct lengths of all sides of shaded region, but but fails to find <u>or</u> finds incorrect perimeter. Find correct lengths of five sides of shaded region and finishes correctly.

6+4+3+6+4+3

26 units>

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('units') - apply only once to each section (a), (b), (c), *etc.* of question.

(25 marks)

(5D*)

Question 6 (cont'd.)

1

¢

- 6(a) (cont'd.)
 - (ii) If the area of the triangle ABC is 48 square units, find the area of the shaded region.

		,			Bioliti	(50)	
	J	C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	H	ł	$6^{2} + 4^{2} + 3^{2} - 4^{2} + 3^{2} - 4^{2} + 3^{2} - 4^{2} + 3^{2$	2((1)(3)(3)	22C
	D	-6		G	(05 C	=	
	A E	F	/				
		F	* 2	B	Area =	1 abser	C
	Area of $\triangle ABC$			Area of $\triangle AED$		-	
\Rightarrow	Area of $\triangle AED$		$\frac{1}{k^2}$ A	area of $\triangle ABC$	3.	12 (3)(4) 5	PIC
	scale factor, k		9 3		=	5.55	
\Rightarrow	Area of $\triangle AED$		1	(48)	48 - 3	3(5.33)	
			$\frac{1}{(3)^2}$	(10)		= 50	
		TT.	48 9				8
			16				
	- (;		.3	inter distant			
\Rightarrow	Area of $\triangle BGF$	Table	$\frac{16}{3}$				
\Rightarrow	Area of $\triangle CJH$	_	$\frac{16}{3}$				
			_				
\Rightarrow	Area of shaded region		48 – 2	$3(\frac{16}{3})$			
		=	48 -				
			32 un	uts ²			
Scale 5D* (0, 2, 3, 4, 5)	Low partial credit: (2 ma	arks)	-	Any correct re	levant step, e.g.	writes down	
					$C = k^2 \times \text{Area } c$ or ' <u>or similar</u> and		
					triangle using a		
				<i>i.e.</i> $\frac{1}{2}(18)h = 1$	48, <u>and stops or</u>	continues	
				incorrectly.			
					using trigonom -(12)(18) sin 2		
				or Cosine Rule	*	-CAD 40,	
					$-2(12)(18)\cos $	$\angle CAB = 9^2$	
					ontinues incorre ABC <u>or</u> ∠BC.		
			-		ΔAED using $\frac{48}{k}$		
					<i>k</i> ontinues incorre		
	Mid partial credit: (3 mar	rks)	-		rea of Area of Δ		
						IH [ans. $\frac{16}{3}$], or	5.33
				but fails to pro		3 7	
	High partial credit: (4 ma	arks)	-	Find correct an	ea of Area of Δ		
				Area of $\triangle BGF$	F <u>or</u> Area of ∆ <i>C</i> smaller triangle	JH and	
					ish <u>or</u> finishes i		
						· · · · · · · · · · · · · · · · · · ·	

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('units²') - apply only once to each section (a), (b), (c), *etc.* of question.

6(b) In the diagram, [CD] is parallel to [AB] and [AC] is perpendicular to [AB]. [AD] and [BC] intersect at the point O. |AB| = 11 units, |CD| = 9 units and |AC| = 12 units.

(i) Prove that the triangles ABO and CDO are similar.

	Consider AABO and	ACDC	2
1	$ \angle BOA $	=	$ \angle COD $
0	$ \angle OAB $	=	$ \angle ODC $
3	$ \angle ABO $	=	$ \angle DCO $

 $\triangle ABO$ and $\triangle CDO$ are similar

Low partial credit: (2 marks)		Any correct relevant step, <i>e.g.</i> explains similar triangles <u>and stops</u> . Identifies one pair of corresponding angles (with <u>or</u> without brief explanation) - may be indicated on diagram <u>and stops</u> <u>or</u> continues incorrectly.
High partial credit: (4 marks)	-	Identifies two pairs of corresponding angles (with brief explanations). Identifies all corresponding pairs of angles, but without explanations.
	_	Shows that $\triangle ABO \equiv \triangle CDO$, <i>i.e.</i> identifies all pairs of corresponding angles (with brief explanations), but fails to conclude that $\triangle ABO$ and $\triangle CDO$ are similar.

Scale 5C (0, 2, 4, 5)

 \Rightarrow

(5C)

... vertically opposite angles

... alternate angles

... alternate angles or

... remaining angles in a triangle

4

2020 LC Maths [HL] - Paper 2

6(b)	(cont'd.)
V(V)	(com u.)

(ii) Find A	D and hen	ce find OD				(10D*)
		C 9 12 15-x A 11		В		
	0	Pythagoras' the	orem			9
	\Rightarrow	$ \operatorname{Hyp} ^2$ $ AD ^2$		Opp ² + (9) ² + (12 81 + 144 225		12 50
	⇒	AD	=	$\sqrt{225}$ 15 units	Jan	
	2	$\triangle ABO$ and $\triangle CL$				
	⇒	ΔABO and ΔCL $\frac{ OD }{ CD }$	=	$\frac{ AO }{ AB }$		× <u> </u>
	\Rightarrow	Let OD = x AO		15 - x		15-× 11
	\Rightarrow	$\frac{x}{9}$	=	$\frac{15-x}{11}$		
	\Rightarrow	11x	=	9(15-x) 135 - 9x		
	\Rightarrow	11x + 9x	_	135 - 92		
	\Rightarrow	20 <i>x</i>		135		
	\Rightarrow	x	=	$\frac{135}{20}$		
\square	~		=	6.75 units	7	
Scale 10D* (0,	4, 6, 8, 10)	Low partial cre	dit: (4 ma	rks) –	simil in the Ident sides <u>and s</u> Find [ans.	correct relevant step, <i>e.g.</i> writes down ar triangles have corresponding sides e same ratio <u>or similar and stops</u> . tifies correct pair of corresponding , <i>i.e.</i> $ AO $ and $ OD $ <u>or</u> $ BO $ and $ OC $, stops or continues incorrectly. s $ AD $ using Pythagoras' theorem 15] <u>and stops or</u> continues rectly.
		Mid partial cro	lit: (6 mar	·ks)	Finds (with	s $ AD $ and states that $\frac{ OD }{ CD } = \frac{ AO }{ AB }$ a or without values) or similar, but to progress.
		High partial cre	dit: (8 ma	rks)	Finds	$\frac{ OD }{9} = \frac{15 - OD }{11} \text{ or } \frac{x}{9} = \frac{15 - x}{11},$ ails to finish or finishes incorrectly.
						<u></u>

* Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('units') - apply only once to each section (a), (b), (c), *etc.* of question.

(50 marks)

 $(5C^{*})$

Section B Contexts and Applications 150 marks

Answer all three questions from this section.

Question 7

7(a) An inverted right circular cone with its axis vertical is filled with water to a depth of 15 cm above its vertex, as shown. The semi-vertical angle of the cone is 30°.

(i) Find r, the radius of the circular surface of the water in the cone. Give your answer in the form $a\sqrt{b}$, where $a, b \in \mathbb{N}$.

Deduct 1 mark off correct answer only for the ondision of or incorrect use of onits ("cm") - apply only once to such section (1) (b), (c), could predict

(5C*)

Question 7 (cont'd.)

- 7(a) (cont'd.)
 - (ii) Hence find the volume of water in the cone, in terms of π .

**

$$V_{\text{water}} = \frac{1}{3}\pi r^2 h$$

= $\frac{1}{3}\pi (5\sqrt{3})^2 (15)$... part (a)(i)
= $\frac{1}{3}\pi (75)(15)$
= $375\pi \text{ cm}^3$

Accept students' answers from part (a)(i) if not oversimplified.

Scale 5C* (0, 2, 4, 5)Low partial credit: (2 marks)-Any correct relevant step, e.g. writes down
correct formula for the volume of a cone
and stops or continues incorrectly.
Some correct substitution into relevant
volume formula (not stated), e.g. h = 15,
and stops or continues incorrectly.High partial credit: (4 marks)-Correct substitution into relevant volume
formula, i.e. $V_{water} = \frac{1}{3}\pi(5\sqrt{3})^2(15)$, but
fails to finish or finishes incorrectly.

Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units ('cm³') - apply only once to each section (a), (b), (c), *etc.* of question.

d

30°

Question 7 (cont'd.)

- 7(b) A solid sphere of radius *a* is placed in the cone. The water rises so as to just cover the sphere, which touches the sides of the cone, as shown.
 - (i) Find d, the depth of the water, and R, the radius of the circular surface of the water, in terms of a.

No deduction applied for the omission of or incorrect use of anity in autor

(10D)

(10D*)

Question 7 (cont'd.)

- 7(b) (cont'd.)
 - (ii) Hence find *a*, the radius of the sphere, correct to two decimal places.

		process.	
$V_{\rm cone}$		$V_{\rm water} + V_{\rm sphere}$	
$V_{\rm cone}$	—	$\frac{1}{3}\pi r^2h$	
	=	$\frac{1}{3}\pi(\sqrt{3}a)^2(3a)$	part (b)(i)
		$3\pi a^3$	
V_{water}			part (a)(ii)
$V_{ m sphere}$	=	$\frac{4}{3}\pi r^3$	
	=	$\frac{4}{3}\pi a^3$	\square
(one 3πa ³		Hio $\frac{4}{375\pi} + \frac{4}{3}\pi a^3$	
$3\pi a^{3} - \frac{4}{3}\pi a^{3}$	=	375π	
$\frac{5}{3}\pi a^3$	-	375π	
<i>a</i> ³	=	375(3)	v
а		225 $\sqrt{225}$ 6.082201 6.08 cm	
	V_{cone} V_{water} V_{sphere} $3\pi a^{3}$ $3\pi a^{3} - \frac{4}{3}\pi a^{3}$ $\frac{5}{3}\pi a^{3}$ a^{3}	$V_{cone} =$ $=$ $V_{water} =$ $V_{sphere} =$ $=$ $3\pi a^{3} - \frac{4}{3}\pi a^{3} =$ $\frac{5}{3}\pi a^{3} =$ $a^{3} =$	$V_{\text{cone}} = V_{\text{water}} + V_{\text{sphere}}$ $V_{\text{cone}} = \frac{1}{3}\pi r^2 h$ $= \frac{1}{3}\pi (\sqrt{3} a)^2 (3a)$ $= 3\pi a^3$ $V_{\text{water}} = 375\pi \text{ cm}^3$ $V_{\text{sphere}} = \frac{4}{3}\pi r^3$ $= \frac{4}{3}\pi a^3$ $= 375\pi + \frac{4}{3}\pi a^3$ $= 375\pi$ $\frac{5}{3}\pi a^3 = 375\pi$ $a^3 = 375\pi$ $a^3 = \frac{375(3)}{5}$ $= 225$ $a = \sqrt{225}$ $= 6\cdot 082201$

** Accept students' answers from parts (a)(ii) and (b)(i) if not oversimplified.

(0, 4, 6, 8, 10)	Low partial credit: (4 marks)		Any correct relevant step, <i>e.g.</i> writes down $V_{\text{cone}} = V_{\text{water}} + V_{\text{sphere}} \text{ or similar and stops.}$ Finds correct V_{cone} [ans. $3\pi a^3$] or V_{sphere} [ans. $\frac{4}{3}\pi a^3$] and stops or continues incorrectly.		
	Mid partial credit: (6 marks)		Substitutes into $V_{\text{cone}} = V_{\text{water}} + V_{\text{sphere}}$ to find $3\pi a^3 = 375\pi + \frac{4}{3}\pi a^3$ (allow students' own answers), but fails to progress further.		
	High partial credit: (8 marks) = Find $3\pi a^3 = 375\pi + \frac{4}{3}\pi a^3$ (correct answer only) with some manipulation, but fails to finish <u>or</u> finishes incorrectly.				

Deduct 1 mark off correct answer only **0** if final answer is not rounded <u>or</u> incorrectly rounded <u>or</u> **2** for the omission of <u>or</u> incorrect use of units ('cm')
 apply only once to each section (a), (b), (c), *etc.* of question.

Ś

Scale 10D*

7(c) A buoy at sea consists of a cone mounted on a heavy cylindrical base which floats with the cone uppermost. The buoy has an overall height of 6 m, and the cone and the cylinder have equal volumes and equal radii.

1.

(i) Find the vertical height of the cone.

Seale 5C* (0, 2, 4, 5)

	V _{cone}		Vcylinder
	V _{cone}		$\frac{1}{3}\pi r^2 h_1$
			$\frac{3}{1}{3}\pi r^2h$
	Vcylinder	=	$\pi r^2 h_2$
	5,1240		$\pi r^2(\tilde{6}-h)$
\Rightarrow	$\frac{1}{3}\pi r^2h$	=	$\pi r^2(6-h)$
\Rightarrow	$\frac{1}{3}\pi r^2 h$ $\frac{1}{3}h$	=	6 – <i>h</i>
\Rightarrow	h	—	3(6-h)
		=	18 - 3h
\Rightarrow	h + 3h		18
\Rightarrow	4h	=	18
\rightarrow	h	_	18
		· · · ·	4
-		= (4.5 m

Low partial credit: (2 marks)	54	Any correct relevant step, <i>e.g.</i> writes down $V_{\text{cone}} = \frac{1}{3}\pi r^2 h_1$ equals $V_{\text{cylinder}} = \pi r^2 h_2$ ' or
	6	'height of cone = $3 \times$ (height of cylinder)' or similar and stops. Finds height of cone $h_1 = h$, then height of cylinder $h_2 = 6 - h$ or similar and stops or continues incorrectly.
High partial credit: (4 marks)		Find $\frac{1}{3}\pi r^2 h = \pi r^2(6-h) \underline{\text{or}} \frac{1}{3}h = 6-h.$
		but fails to finish or finishes incorrectly.

* Deduct 1 mark off correct answer only for the omission of or incorrect use of units ('m') + apply only once to each section (a), (b), (c), etc. of question,

7(c) (cont'd.)

(ii) The diameter of the cone and cylinder is 2.5 metres. Find the total volume of the buoy, in terms of π .

	ume of the buoy, in	terms o	f π.		(5C*
0	r _{cone}	=	r _{cylinder} 2·5		
			2.5		
		=	1.25 m		
	$h_{\rm cone}$	=	h		
		=	4·5 m		part (c)(i)
\Rightarrow	$V_{\rm cone}$	-	$\frac{1}{3}\pi(1\cdot 25)^2$	² (4·5)	
		=	$\frac{1}{3}\pi(\frac{25}{16})(\frac{25}{16})$	$(\frac{9}{2})$	
		=	$\frac{75\pi}{32}$) 3000 - I	(12(15))
	V _{cone}	=	Veylinder	pain	
\Rightarrow	$V_{\rm total}$	=	$2(\frac{75\pi}{32})$		
/	the second second		75π	or 4.6875π m ³)
<u>or</u>					
0	r _{cylinder}	=	rcone		
			$\frac{2\cdot 5}{2}$		
		-			
	$h_{ m cylinder}$	_	1·25 m		
	, cylinder		$\begin{array}{c} 6-h\\ 6-4\cdot 5\end{array}$		mout (-)(')
		=	1.5 m		part (c)(i)
\Rightarrow	$V_{ m cylinder}$		$\pi(1.25)^2(1.1)$	5)	
		=	$\pi(\frac{25}{16})(\frac{3}{2})$		
			$\frac{75\pi}{32}$		
	V _{cylinder}	==	V _{cone}		
\Rightarrow	Vtotal	=	$2(\frac{75\pi}{32})$		
			$\frac{2(-32)}{32}$		
			$\frac{75\pi}{16}$ m ³ or	4·6875π m ³	
	** Accept stud	ents' an	swers from pa	urt (c)(i) if not ove	rsimplified.
Scale 5C* (0, 2, 4, 5)	Low partial credit				vant step, e.g. finds correct
			-	Frome Of Preylinder [a Some correct suit for volume of co	ns. 1.25] and stops. bstitution into formula one [method 0] or ler [method 0] and stops
	High partial credi	t: (4 mai	·ks) —	or volume of cyl	me of cone [method 0] inder [method 0]
				[ans. $\frac{75\pi}{32}$ in each	a case], but fails to finish
				or finishes incorr	rectly.

Deduct 1 mark off correct answer only for the omission of <u>or</u> incorrect use of units (m^3) - apply only once to each section (a), (b), (c), *etc.* of question.

DEB

(10D*)

Question 7 (cont'd.)

- (cont'd.) 7(c)
 - The buoy floats with its axis vertical and two-thirds of its volume submerged below (iii) the waterline.

Find the height of the vertex of the cone above the waterline. Give your answer correct to two decimal places.

	$V_{\rm total}$		$\frac{75\pi}{16}$ m ³	part (c)(ii)
\Rightarrow	$V_{ m submerged}$		$\frac{2}{3}(\frac{75\pi}{16})$	
\Rightarrow	$V_{\rm above \ waterline}$	Roo Mi	$\frac{75\pi}{16} - \frac{2}{3}(\frac{75\pi}{16})$	
			$\frac{25\pi}{16}$ or 1.561	
	Using similar tria	ngle		
			1-25	1
	$\frac{x}{y}$		4-5	4.5
		Anna A	5	4.5
\Rightarrow	X		$ \frac{1-25}{4-5} \frac{5}{18} \frac{5y}{18} $	1.25
\Rightarrow	$V_{\rm cone}$ above waterline		$\frac{1}{3}\pi x^2 y$	1.23
			$\frac{1}{3}\pi(\frac{5y}{18})^2(y)$	
			$\frac{25\pi}{16}$	
\Rightarrow	$\frac{1}{3}\pi(\frac{5y}{18})^2(y)$		$\frac{25\pi}{16}$	
	$25\pi v^3$		25π	
\Rightarrow	$\frac{25\pi y^3}{972}$		16	
\Rightarrow	y ³		<u>972</u> 16	
			60.75	
\Rightarrow	y	218.2	3/60-75	
	-		3 931112	
		É	3.93 m	
	** Accept sit	idents' :	mswers from part (c)(ii) if uc	ot oversimplified.

Low partial credit: (4 marks)	т. Ц	Any correct relevant step, e.g. finds correct $V_{\text{nubuserged}} \underbrace{\text{or}}_{\text{schwerged}} \frac{V_{\text{sbove waterfine}}}{4.5} \underbrace{\text{and stops}}_{18}$ Writes down $\frac{1.25}{4.5} \underbrace{\text{or}}_{18} \frac{5}{18}$ and stops $\underbrace{\text{or continues incorrectly.}}$
Mid partial credit: (6 marks)		Finds $\frac{x}{y} = \frac{1.25}{4.5} \underline{\text{or}} \frac{5}{18}$ and substitutes into $F_{\text{convertines}}$ i.e. $\frac{1}{3}\pi (\frac{5.9}{18})^2 (v)$, but fails to progress further.
High partial credit; (¶marks)		Find $\frac{1}{3}\pi(\frac{5\gamma}{18})^2(y) = \frac{25\pi}{16}$ or similar, but tails to finish or finishes incorrectly.
	Mid partial credit: (6 marks)	Mid partial credit: (6 marks)

Deduct 1 mark off correct answer only 0 if final answer is not rounded of incorrectly rounded or @ for the patiesion of or incorrect use of units ("m*)

2020 LC Maths [HL] - Paper 2

stion 8						(50 marks)
8(a)	The lengt	almon are harves hs of the salmon ean of 32.8 cm an	produced in a pa	uticular off-s	shore fish farn	n are normally distributed
	(i) Fin	nd the proportion	of salmon which	h are more th	an 35 cm in l	ength. $\mu = 3.18 \frac{35}{100}$
			Ζ	-	$\frac{x-\mu}{\sigma}$	Q=2.4
			$\mu \sigma$		32·8 2·4	
		⇒	Z ₃₅		$\frac{35-32\cdot 8}{2\cdot 4}$ 0.916666	A
		⇒	P(x > 35)	a a <u>or</u>	$\begin{array}{c} 0.92 \\ P(z > 0.92) \\ 1 - P(z < 0.92) \\ 1 - 0.8212 \\ 0.1788 \\ 17.88\% \end{array}$	() () () () () () () () () () () () () (
	Scale 10D	0 (0, 4, 6, 8, 10)	Low partial cr	redit: (4 mar	ks)	Any correct relevant step, <i>e.g.</i> writes down correct relevant formula for z-value with some correct substitution. Finds correct value for z_{35} and stops or continues incorrectly.
		Mid partial cr	edit: (6 mark	(S) =	<u>or</u> continues incorrectly. Finds $P(x > 35) = 1 - P(z < 0.92))$ (no z-scores found), <u>and stops or</u> continues incorrectly. Finds z-value <u>and</u> related z-score, <i>i.e.</i> P(x > 35) = P(z < 0.92) = 0.8212 (no manipulation) <u>and stops or</u> continues incorrectly.	
			High partial c	redit: (8 mar	ks) –	Finds z-value and z-score and manipulate $P(z > 0.92)$ correctly, but fails to finish or finishes incorrectly.

exams

- 8(b) The owners of the fish farm have introduced new practices to produce salmon in larger, less densely populated cages which allow the fish to follow their natural shoaling behaviour. In a random sample of 250 salmon produced in this way, it was found that their lengths were normally distributed with a mean of 33.2 cm and the same standard deviation.
 - (i) Test the hypothesis, at the 5% level of significance, that the mean length of the salmon produced has not changed. State the null hypothesis and your alternative hypothesis. Give your conclusion in the context of the question.

i.e. 95% confidence that the mean length of salmon in this sample lies in the range $32.9 \le \mu \le 33.5$

(10D)

,

K

(ii) On further analysis, it was determined that 60% of the salmon produced in the fish farm have lengths of between 31.8 cm and t cm.
 Find the value of t.

Find the value of t.	con 51 c ont une 1				(10D
	Ζ	=	$\frac{x-\mu}{\sigma}$		
	μ		32.8		
	σ		2.4		261
\Rightarrow	Z _{31.8}		<u>31·8</u> – 2·		
		=	$\frac{-1}{2\cdot 4}$		60%
		_	-0.416	6666	-0.42 k
		211	-0.42 $t - 32$.8	-0.42 k
\Rightarrow	Z_{l}	=	2.4		
\Rightarrow	$P(31 \cdot 8 \le x \le t)$	-	<i>P</i> (−0·4	$ 2 \leq z \leq$	$\leq \frac{t-32\cdot 8}{2\cdot 4}$)
		1	0.6		2 T
	$P(z \leq -0.42)$	=	$P(z \ge 0)$		
		=	1 - P(1 - 0.0)		(2)
		÷	0.3372	\mathbf{D}	- DIUZ
\Rightarrow	$P(z \leq k)$	=	0·6 + 0 0·9372		9572
\Rightarrow	k	=	1.53	0	from z-tables
	1. 53	=	$\frac{t-32}{2\cdot 4}$.8	k = 1.53 (2)
\Rightarrow	$\frac{t-32\cdot 8}{2\cdot 4}$	1.00	1.53		
\Rightarrow	t - 32.8	=	1.53(2	·4)	
\Rightarrow	<i>t</i>	=	3·672 3·672 -	+ 37.8	
		H	36.472		
		ĩ	36.47	cm	
e 10D (0, 4, 6, 8, 10)	Low partial credi	t: (4 m	arks)		Any correct relevant step, <i>e.g.</i> sketches normal distribution graph with $z = -0.42$ and 60% above this point indicated and stops.
					Finds $z_{31\cdot 8} = -0.42 \text{ or } z_1 = \frac{t - 32\cdot 8}{2\cdot 4}$ (no
					z-score found) and stops or continues incorrectly.
	Mid partial credit	: (6 m	arks)		Finds $P(z \le -0.42) = 1 - 0.6628$ or 0.3372 and $P(z \le k) = 0.6 + 0.3372$ or 0.9372 and stops or continues incorrectly.
	High partial credi	t: (8 m	arks)		Finds $k = 1.53$, but fails to find or finds incorrect value of t.

⁸⁽a) (cont'd.)

 $d \in$

Question 8 (cont'd.)

d'an

 $d \in$

÷

8(b) (i) (cont'd)		
* 3	$32.9 < \mu < 33.5$, we reject the nu	the mean length of salmon in this sample, Il hypothesis (H_0) and accept the alternative fude that there is sufficient evidence to suggest
Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	 Any correct relevant step, <i>e.g.</i> writes down correct null hypothesis (H₀) and/or alternative hypothesis (H₁) only. Refers to comparing z-score to 1.96 [method 0]. Writes down correct formula for confidence interval, <i>i.e.</i> x ± z σ/√n or x ± 1.96 σ/√n, and stops [method 0]. Some correct substitution (x, μ, σ or n) into formula for z-score [method 0] or (x, σ or n) into formula for 95% confidence interval [method 0] and stops or continues incorrectly.
	Mid partial credit: (6 marks)	 Fully correct substitution into formula for z-score [method 1] or formula for 95% confidence interval [method 3] and stops or continues incorrectly.
	High partial credit: (8 marks)	 Finds correct z-score or 95% confidence interval but: fails to accept or reject hypothesis, fails to contextualise answer properly.

44

exams -

(5D)

Question 8 (cont'd.)

6

8(b) (cont'd)

0

(ii) Find the *p*-value of the test you performed in **part (b)(i)** and explain what this value represents in the context of the question.

	<u>p-value</u>		
	Ζ	$=$ $\frac{\overline{x}-\mu}{\sigma}$	
		$\frac{\sigma}{\sqrt{n}}$	
	x	= 33.2	
	μ	= 32.8	
	σ	= 2.4	
	n	= 250	
\Rightarrow	Ζ	$= \frac{33\cdot 2 - 32\cdot 8}{2\cdot 4}$	
			6
		= 2.635231 = 2.64 -2.64	
		$\stackrel{=}{\simeq} 2.64$ part (b)(i)	
	D(x, 0, (4))		
\Rightarrow	$P(z > 2 \cdot 64)$	= 1 - P(z < 2.64)	
		$= 1 - 0.9959 \qquad \dots \text{ from } z\text{-tables}$	
		= 0.0041	
\Rightarrow	<i>p</i> -value	= P(z < -2.64) + P(z > 2.64)	
		= 2P(z > 2.64)	
		2×0.0041	
		= 0.0082	
		< 0.05	

 \Rightarrow we reject the null hypothesis (H_0) and accept the alternative hypothesis (H_1)

0

Explanation

Any 1:

- the p-value is the probability that the test statistic or a more extreme value could occur if the null hypothesis is true //
- if the mean length is correct (32.8 cm), then here is a 0.82% chance of finding a mean length of 33.2 cm
 because this has less than a 5% chance, we reject the null hypothesis //
 - there is a 0.82% chance of finding a mean length of 33.2 cm if the null hypothesis is correct

Accept students' answers from part (b)(i) if not oversimplified.

	Scale	5D	(0.	2.	3.	4.	5)	
--	-------	----	-----	----	----	----	----	--

Low partial credit: (2 marks)		Any correct relevant step, <i>e.g.</i> writes down correct relevant formula for <i>p</i> -value and stops.
	-	Some correct substitution $(\bar{x}, \mu, \sigma \text{ or } n)$ into formula for z-value (not stated)
		and stops or continues incorrectly. Rewrites z-value from part (b)(i) and stops or continues incorrectly.
Mid partial credit: (3 marks)		Finds $P(z < 2.64) = 0.9959$, but fails to manipulate $P(z > 2.64)$ correctly.
		Finds $P(z > 2.64) = 1 - P(z < 2.64)$, but fails to find or finds incorrect z-value.
High partial credit: (4 marks)		Finds correct <i>p</i> -value and shows value < 0.05 , but fails to contextualise answer properly.

di.

÷,

8(c) Farmed trout are produced in freshwater fish farms. In a particular fish farm, the lengths of the trout produced are normally distributed with 97.5% of them having lengths of less than 34.2 cm and 67% of them having lengths of greater than 26.6 cm.

Find the mean and standard deviation of the lengths of the trout produced in this fish farm. Give your answers correct to two decimal places.

)

3·168367...

 $\frac{27.99 \text{ cm}}{34.2 - \mu}$ $\frac{34.2 - \mu}{1.96}$ $\frac{34.2 - 27.99}{1.96}$

Scale 15D (0, 4, 8,	12, 15) Low partial credit: (4 marks)		Any correct relevant step, <i>e.g.</i> sketches normal distribution graph with 97.5%, 67% or 33% indicated and stops. Finds $P(z \le k) = 0.975 \Rightarrow k = 1.96$ (case ①) or $P(z \le -t) = 0.33 \Rightarrow P(z \le t) = 0.67$ $\Rightarrow t = 0.44$ (case ②) and stops or
		-	continues incorrectly. Some correct substitution into formula for z-value (either case) <u>and stops</u> or continues incorrectly.
	Mid partial credit: (8 marks)	-	Finds either $\sigma = \frac{34 \cdot 2 - \mu}{1 \cdot 96}$ (Eqn. ①) or $\sigma = \frac{26 \cdot 6 - \mu}{-0 \cdot 44}$ (Eqn. ②) and stops
	High partial credit: (12 marks)	-	or continues incorrectly. Finds either $\sigma = \frac{34 \cdot 2 - \mu}{1 \cdot 96}$ (Eqn. D) and $\sigma = \frac{26 \cdot 6 - \mu}{4}$ (Eqn. D)
		35	and $\sigma = \frac{26 \cdot 6 - \mu}{-0.44}$ (Eqn. 2), but fails to finish or finishes incorrectly. Finds value of μ [ans. 27.99], buts fails to find or finds incorrect value of σ .

1

2020 LC Maths [HL] - Paper 2 Question 9 (50 marks) CE 9(a) A television mast is held in a vertical position by two metal supports, [AE] and [CD], and 1.8 m a wire cable [AF], as shown. 3.7 m |AD| = 2.4 m, |AF| = 3.7 m, |DF| = 1.8 m,2·9 m D |CE| = 2.9 m and $|\angle BCE| = 48^{\circ}$. 2.4 m 48 Α В С (i) Find |BE|, correct to two decimal places. (5C*) 0 Trigonometry |Opp| $\sin |\angle \theta|$ |Hyp| BE $\sin |\angle BCE|$ \Rightarrow |CE||BE|sin 48° \Rightarrow 2.9 BE $(2.9)(\sin 48^{\circ})$ \Rightarrow BE \Rightarrow (2.9)(0.743144...)2-155119... 2.16 m \cong or 0 Sine Rule b а С $\sin B$ $\sin C$ sin A |BE||CE| $\sin |\angle BCE|$ $\sin|\angle EBC|$ 2.9 BE \rightarrow sin 48° sin 90° $(2.9)(\sin 48^{\circ})$ |BE|sin 90° (2.9)(0.743144...) 1 2.155119.... 2.16 m Scale 5C* (0, 2, 4, 5) Low partial credit: (2 marks) Any correct relevant step, e.g. writes down correct formula for trig. ratio (sin) or correct formula for Sine Rule and stops. Finds $\sin 48^\circ = \frac{|BE|}{|CE|}$, $\frac{|BE|}{2\cdot 9}$ or 0.743144...and stops or continues incorrectly. Some correct substitution into Sine Rule and stops or continues incorrectly. High partial credit: (4 marks)

The later is mark off correct answer only $\mathbf{0}$ is small answer is not rounded as a correctly rounded or $\mathbf{0}$ for the omission of $\mathbf{0}$ incorrect use of units (m) upply only once to each section (a), (b), (c), (c), of unestion.

Page 88 of 95

(10D*)

Question 9 (cont'd.)

- 9(a) (cont'd.)
 - (ii) Find $| \angle ADF |$, correct to the nearest degree.

$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{array}$	$ AF ^{2} =$ $(3 \cdot 7)^{2} =$ $13 \cdot 69 =$ $(8 \cdot 64) \cos \angle ADF =$ $\cos \angle ADF =$	$=$ $(2\cdot 4)^2$ -	+ <i>DF</i> + (1·8) 3·24 - 3·24 - 824 824	$ ^{2} - 2 AD DF \cos \angle ADF $ $ ^{2} - 2(2 \cdot 4)(1 \cdot 8) \cos \angle ADF $ $- (8 \cdot 64) \cos \angle ADF $ $- 13 \cdot 69$ 824)
Scale 10D* (0, 4, 6, 8, 10)	I ow partial credit: (4	4 marks)	-	Any correct relevant step, <i>e.g.</i> writes down correct formula for Cosine Rule <u>and stops</u> . Some correct substitution into relevant formula for Cosine Rule (not stated) <u>and stops or</u> continues incorrectly.
	Mid partial credit: (6	marks)	-	Correct substitution into formula for Cosine Rule <u>and stops or</u> continues incorrectly.
	High partial credit: (8 marks)		Correct substitution into formula for Cosine Rule with some manilupation, <i>e.g.</i> $\cos \angle ADF = -\frac{4 \cdot 69}{8 \cdot 64}$ or $-0.542824,$
				but fails to finish <u>or</u> finishes incorrectly. Substitutes almost correctly into formula for Cosine Rule (allow one incorrect <u>or</u> omitted substitution) and finishes correctly. Incorrect calculator mode - apply once- only [Radian: ans. $2 \cdot 144592$; Gradian: ans. $136 \cdot 528992$]. Finds correct answer, but no work shown.

* Deduct 1 mark off correct answer only if final answer is incorrectly rounded <u>or</u> is not rounded - apply deduction only once to each section (a), (b), (c), *etc.* of question.

No deduction applied for the omission of <u>or</u> incorrect use of units ('°') as units are mentioned in the question.

¢

di.

Question 9 (cont'd.)

9(a) (cont'd.)

> (iii) Hence find | EF |, correct to two decimal places.

> > > **

*

		*		
	$ \angle BDA $		180° – ∠ADF 180° – 123° 57°	part (a)(ii)
	$\cos \angle \theta $		Adj Hyp	
\Rightarrow	$\cos \angle BDA $		$\frac{ BD }{ AD }$	
\Rightarrow	cos 57°		$\frac{ BD }{2\cdot 4}$	
\Rightarrow	BD	=	(2·4)(cos 57°) (2·4)(0·544639) (1·307133.,.	
	BF	1	<i>BD</i> + <i>DF</i> 1·307133+1·8 3·107133	wholettung
	EF	1	<i>BF</i> - <i>BE</i> 3·1071332·16	part (a)(i)
		= ≅ (0·947133 0·95 m	

Accept students' answers from parts (a)(i) and (a)(ii) if not oversimplified.

Low partial credit: (2 marks)	35	Any correct relevant step, <i>e.g.</i> writes down correct formula for trig. ratio (cos) and stops.
	-	Finds $ \angle BDA = 180^\circ - 123^\circ \text{ or } 57^\circ$ and stops or continues incorrectly.
	11	Finds $\cos 57^\circ = \frac{ BD }{2 \cdot 4} \text{ or } 0.544639$
		and stops or continues incorrectly.
High partial credit: (4 marks)	-	Finds correct <i>BD</i> [ans. 1.307133], but fails to finish <u>or</u> finishes incorrectly.
		Finds $ BD \underline{\text{or}} BF $ (allow one omission sign $\underline{\text{or}}$ incorrect calculator mode error) and finishes correctly.

Deduct 1 mark off correct answer only **0** if final answer is not rounded <u>or</u> incorrectly rounded or **2** for the omission of or incorrect use of units ('m') apply only once to each section (a), (b), (c), etc. of question.

Scale 5C* (0, 2, 4, 5)

(5C*)

 d_{2}

4

9(b) The summer season in a certain holiday resort runs from 15 April to 30 September, inclusive. The number of visitors to the resort (in thousands), n(t), can be approximated by the function:

$$n(t) = 4 \cdot 8 - 2 \cdot 6 \cos\left(\frac{\pi}{84}t\right),$$

where *t* is the number of days after 15 April and $\left(\frac{\pi}{84}t\right)$ is expressed in radians.

(i) Find the number of visitors to the resort on 13 May (28 days after 15 April).

$$n(t) = 4 \cdot 8 - 2 \cdot 6 \cos\left(\frac{\pi}{84}t\right)$$

$$\Rightarrow n(28) = 4 \cdot 8 - 2 \cdot 6 \cos\left(\frac{\pi}{84}(28)\right)$$

$$= 4 \cdot 8 - 2 \cdot 6 \cos\left(\frac{\pi}{3}\right)$$

$$= 4 \cdot 8 - 2 \cdot 6 \cos\left(\frac{\pi}{3}\right)$$

$$= 4 \cdot 8 - 2 \cdot 6 (0 \cdot 5)$$

$$= 4 \cdot 8 - 1 \cdot 3$$

$$= 3 \cdot 5$$

$$\Rightarrow \# \text{ visitors} = 3 \cdot 5 \times 1,000$$

$$= 3,500$$

Low partial credit: (2 marks)		Any correct relevant step, <i>e.g.</i> substitutes correctly into $n(t)$, <i>i.e.</i> $n(28) = 4 \cdot 8 - 2 \cdot 6 \cos\left(\frac{\pi}{84}(28)\right)$,
		and stops or continues incorrectly.
High partial credit: (4 marks)	-	Finds $n(28) = 3.5$, but fails to finish or finishes incorrectly.

(5C)

ś

- **9(b)** (cont'd.)
 - (iv) Find the two dates on which the number of visitors to the resort is approximately 3,851. (10D)

i duite		01 11010	ore to the report is approximately 5,051
	n(t)		$4 \cdot 8 - 2 \cdot 6 \cos\left(\frac{\pi}{84}t\right)$
			3.851
\Rightarrow	$4\cdot 8 - 2\cdot 6\cos\left(\frac{\pi}{84}t\right)$		3.851
\Rightarrow	$2 \cdot 6 \cos\left(\frac{\pi}{84}t\right)$		4.8 - 3.851
			0.949
\Rightarrow	$\cos\left(\frac{\pi}{84}t\right)$		0.949 2.6
			0.365
\Rightarrow	$\frac{\pi}{84}t$		$\cos^{-1}(0.365)$
*	.0.1		1.197163
\Rightarrow	L		$\frac{84}{\pi}(1.197163)$
			32.009794
		≅ \	32 days
_	Date ①		15/4 + 32
	Date		15/4 + (15 + 17)
		=	17/5 or 17 May
	12	3	
	Fourth quadrant		v T
\Rightarrow	$\frac{\pi}{84}t$	-	$2\pi - \cos^{-1}(0.365)$ sin All x
			$2\pi - 1.197163$ $\tan \cos$
			5.086021
\Rightarrow	1	=	$\frac{84}{\pi}(5.086021)$
			135-990205
		21	136 days
>	Date ②		15/4 + 136
	Duty		15/4 + 130 15/4 + (15 + 31 + 30 + 31 + 29)
		-	29/8 or 29 August
			<u>or</u> we compose

Scale 10D (0, 4, 6, 8, 10)	Low partial credit: (4 marks)	Any correct relevant step, <i>e.g.</i> writes down $4\cdot 8 - 2\cdot 6\cos\left(\frac{\pi}{84}t\right) = 3\cdot 851$ or equivalent and stops or continues incorrectly.
	Mid partial credit: (6 marks)	Finds $\cos\left(\frac{\pi}{84}t\right) = \frac{0.949}{2.6} \text{ or } 0.365$
	High partial credit: (8 marks)	and stops or continues incorrectly. Finds one value of confy [ans, 32] and corresponding date, but fails to find or finds incorrect second date.
		Finds both values of t, but fuils to find or finds incorrect corresponding dates.

2'age 94 87 95

- 9(b) (cont'd.)
 - (v) Find the rate at which the number of visitors to the holiday resort is changing on 19 August (126 days after 15 April).
 Explain your answer in the context of the question.

(5D)

$n'(t) = \frac{d}{dt}(4\cdot 8 - 2\cdot 6\cos\left(\frac{\pi}{84}\right))$ $= (-2\cdot 6)(\frac{\pi}{84})(-\sin\left(\frac{\pi}{84}\right))$ $= \frac{2\cdot 6\pi}{84}\sin\left(\frac{\pi}{84}t\right)$ $@ t = 126$			
$n'(t) = \frac{d}{dt}(4\cdot 8 - 2\cdot 6\cos\left(\frac{\pi}{84}\right))$ = $(-2\cdot 6)(\frac{\pi}{84})(-\sin\left(\frac{\pi}{84}\right))$ = $\frac{2\cdot 6\pi}{84}\sin\left(\frac{\pi}{84}t\right)$ @ $t = 126$ $n'(126) = \frac{2\cdot 6\pi}{84}\sin\left(\frac{\pi}{84}(126)\right)$ = $\frac{2\cdot 6\pi}{84}\sin\frac{3\pi}{2}$	Rate at which t	he number	of visitors is changing
$= (-2 \cdot 6)(\frac{\pi}{84})(-\sin\left(\frac{\pi}{8}\right))$ $= \frac{2 \cdot 6\pi}{84}\sin\left(\frac{\pi}{84}t\right)$ $(a) t = 126$ $= \frac{2 \cdot 6\pi}{84}\sin\left(\frac{\pi}{84}(126)\right)$ $= \frac{2 \cdot 6\pi}{84}\sin\frac{3\pi}{2}$	n(t)		$4\cdot 8 - 2\cdot 6\cos\left(\frac{\pi}{84}t\right)$
$= \frac{2 \cdot 6\pi}{84} \sin\left(\frac{\pi}{84}t\right)$ $(a) t = 126$ $n'(126) = \frac{2 \cdot 6\pi}{84} \sin\left(\frac{\pi}{84}(126)\right)$ $= \frac{2 \cdot 6\pi}{84} \sin\frac{3\pi}{2}$	n'(t)		$-\frac{d}{dt}(4\cdot 8 - 2\cdot 6\cos\left(\frac{\pi}{84}\right))$
(a) $t = 126$ $n'(126) = \frac{2 \cdot 6\pi}{84} \sin\left(\frac{\pi}{84}(126)\right)$ $= \frac{2 \cdot 6\pi}{84} \sin\frac{3\pi}{2}$		-	$(-2.6)(\frac{\pi}{84})(-\sin\left(\frac{\pi}{84}\right))(-\sin\left(\frac{\pi}{84}\right))$
$n'(126) = \frac{2 \cdot 6\pi}{84} \sin\left(\frac{\pi}{84}(126)\right)$ $= \frac{2 \cdot 6\pi}{84} \sin\frac{3\pi}{2}$			$\frac{2\cdot 6\pi}{84}\sin\left(\frac{\pi}{84}t\right)$
$n'(126) = \frac{2 \cdot 6\pi}{84} \sin\left(\frac{\pi}{84}(126)\right)$ $= \frac{2 \cdot 6\pi}{84} \sin\frac{3\pi}{2}$	@ <i>t</i> = 126		
$= \frac{2 \cdot 6\pi}{84} \sin \frac{3\pi}{2}$ $= \frac{2 \cdot 6\pi}{84} (-1)$			$\frac{2\cdot 6\pi}{84}\sin\left(\frac{\pi}{84}(126)\right)$
$=$ $\frac{2 \cdot 6\pi}{84}(-1)$		=	$\frac{2 \cdot 6\pi}{84} \sin \frac{3\pi}{2}$
		=	$\frac{2 \cdot 6\pi}{84}$ (-1)

==

Ĩ

2·6π 84

-0.097239... × 1,000

-97·239772... -97·24

0

0

 \Rightarrow

Explanation

Answer

the number of visitors is decreasing by (approximately) 97 per day

Scale 5D (0, 2, 3, 4, 5)	Low partial credit: (2 marks)	Any correct relevant step, <i>e.g.</i> some correct effort at differentiation.
	Mid partial credit: (3 marks)	Finds $n'(t) = (-2.6)(\frac{\pi}{84})(-\sin(\frac{\pi}{84}t))$
	×	$\underline{\text{or }} n'(t) = \frac{2 \cdot 6\pi}{84} \sin\left(\frac{\pi}{84}t\right) \underline{\text{and stops}}$
		or continues incorrectly.
	High partial credit: (4 marks) —	Finds correctly $n'(126) = -0.097239,$ -97.239772 <u>or</u> -97.24, but fails to contextualise answer properly.

(ii) Find the largest number of visitors to the resort and the date on which this occurs.

 d_{1}

dx

2020 LC Maths [HL] - Paper 2

(5D

	Largest number of visitors		
		occurs	when $\cos\left(\frac{\pi}{84}t\right) = -1$
	$n(t)_{\rm max}$	-	$4 \cdot 8 - 2 \cdot 6(-1)$
			4.8 + 2.6
			7.4
\Rightarrow	Max. # visitors	=	7.4×1,000 7,400
		= (7,400
	Date		
	$\cos\left(\frac{\pi}{84}t\right)$	=	-1
\Rightarrow	$\frac{\pi}{t}$	_	$\cos^{-1}(-1)$

0

0

 $_{\rm sh}$

\Rightarrow	$\frac{\pi}{84}t$		$\cos^{-1}(-1)$
\Rightarrow	t.	==	π 84
⇒	Date	=	$\frac{15/4 + 84}{15/4 + (15 + 31 + 30 + 8)}$ 8/7 or 8 July
\sum	Low partial cr	edit: (2 ma	rks) Any correct relevant s

Scale 5D (0, 2, 3, 4, 5)	Low partial credit: (2 marks)		Any correct relevant step, e.g. writes down
			largest # visitors when $\cos\left(\frac{\pi}{84}t\right) = -1$
			and stops.
		-	Attempts to differentiate $n(t)$ and stops or continuous incompatible
			or continues incorrectly.
			Finds $\sin\left(\frac{\pi}{84}t\right) = 0$ or $\frac{\pi}{84}t = \sin^{-1}(0)$,
			but fails to find t or finds incorrect t,
			e.g. error using radians.
	Mid partial credit: (3 marks)		Finds $n(t)_{\text{max}} = 7.4 \text{ or } t = 84 \text{ and stops}$ or continues incorrectly.
	High partial credit: (4 marks)		Finds $n(t)_{\text{max}} = 7.4$ and $t = 84$ and stops or continues incorrectly.
			Finds $n(t)_{max} = 7.4$ and Max. # visitors = 7,400, but fails to find date on which this occurs.
			Finds $t = 84$ and Date = 8/7, but fails to find Max. # visitors on this date.

Ś

9(b)

(cont'd.) (iii) Find the period and the range of n(t). Hence draw a rough sketch of n(t) on the axes below. (5C) 0 Period General equation of a cos function: f(t) $a + b \sin ct$ 2π Period С $4 \cdot 8 - 2 \cdot 6 \cos\left(\frac{\pi}{84}\ell\right)$ n(t)π \Rightarrow С 84 2π Period \Rightarrow π 84 84 2π π 168 days 0 Range [a-b, a+b]Range = $[4 \cdot 8 - 2 \cdot 6, 4 \cdot 8 + 2 \cdot 6] \times 1,000$ _ = $[2 \cdot 2, 7 \cdot 4] \times 1,000$ = [2,200, 7,400] 6 Sketch n(t)10 8 6 4 2 t 3hScale 5C (0, 2, 4, 5) Low partial credit: (2 marks) Any correct relevant step, e.g. writes down correct formula for the period of a trig. function or general equation of a cos function with notation. Some correct use of $2\pi \text{ or } \frac{\pi}{84}$, e.g. $2\pi \div x$ $\underline{\text{or}} x \div \frac{\pi}{84}, x \neq 2\pi \underline{\text{or}} \frac{\pi}{84}.$ Finds period or range of n(t) and stops or continues incorrectly. High partial credit: (4 marks) Finds period and range of n(t), but draws no sketch or incorrect sketch of n(t).