
Analysis of electroencephalography (EEG) signals always
involves questions of quantification; such questions may con-
cern the precise value of the dominant frequency and the simi-
larity between two signals recorded from symmetric derivations
at the same time or different times. In these examples, there is a
question that can be solved only by taking measures with regard
to the EEG signal. Without such measures, EEG appraisal
remains subjective and can hardly lead to logical systematiza-
tion. Classic EEG evaluation has always involved measuring fre-
quency and/or amplitude with the help of simple rulers. The
limitations of such simple methods are severe, particularly
when large amounts of EEG data must be evaluated and the
need for data reduction is felt strongly, as well as when rather
sophisticated questions are being asked, such as whether EEG
signal changes occur in relation to internal or external factors,
and how synchronous are EEG phenomena occurring in differ-
ent derivations. 

Clear replies to these questions require some form of EEG
analysis. However, such analysis not only is a problem of quan-
tification, but also involves elements of pattern recognition.
Every electroencephalographer knows that it is sometimes
extremely difficult to cite exact measures for such EEG phe-
nomena as spikes, sharp waves, or other abnormal patterns; the
experienced specialist is able to detect them only by “eye-
balling.” These types of problems may be solved using pattern
recognition analysis techniques, based on the principle that fea-
tures characteristic of the EEG phenomena have to be meas-
ured. This phase of feature extraction is followed by classification
of the phenomena into different groups. EEG analysis thus
implies not only simple quantification, but also feature extrac-
tion and classification.

The primary aim of EEG analysis is to support electroen-
cephalographers’ evaluations with objective data in numerical
or graphic form. EEG analysis, however, can go further, actually
extending electroencephalographers’ capabilities by giving
them new tools with which they can perform such difficult
tasks as quantitative analysis of long-duration EEG in epileptic
patients and sleep and psychopharmacologic studies.

The choice of analytic method should be determined mainly
by the goal of the application, although budget limitations must
also be taken into consideration. The development of an appro-
priate strategy rests on such practical facts as whether analysis
results must be available in real time and online or may be pre-
sented offline. In the past, the former requirement would pose
considerable problems, solvable only by adopting a rather sim-
ple form of analysis; the development of new computer tech-
nology has provided more acceptable solutions. Another

practical consideration is the number of derivations to be ana-
lyzed and whether the corresponding topographic relations
have to be determined or the analysis of one or two derivations
is enough; the latter may suffice during anesthesia monitoring
or in sleep research. Whether the analysis of a relatively short
EEG epoch is sufficient or must involve very long records, for
instance, up to 24 hours is another important factor.

In short, the method of analysis must be suited to the purpose
of the analysis. Among the different purposes are the following:
(i) determining whether a relatively short EEG record taken in
a routine laboratory is normal or abnormal; (ii) classifying an
EEG as abnormal, for example, as epileptiform or hypofunc-
tional; (iii) evaluating changes occurring in serial EEG; and (iv)
evaluating trends during many hours of EEG monitoring, such
as under intensive care conditions for heart surgery or in long-
term recordings in epileptic patients.

GENERAL CHARACTERISTICS

The EEG is a complex signal, the statistical properties of which
depend on both time and space. Regarding the temporal char-
acteristics, it is essential to note that EEG signals are ever-
changing. However, they can be analytically subdivided into
representative epochs (i.e., with more or less constant statistical
properties).

Estimates of the length of such epochs vary considerably
because of dependence on the subject’s behavioral state. When
the latter is kept almost constant, Isaksson and Wennberg (1)
found that, over relatively short-time intervals, epochs can be
defined that can be considered representative of the subject’s
state; in this study, some 90% of the EEG signals investigated had
time-invariant properties after 20 seconds, whereas less than
75% remained time invariable after 60 seconds. Empirical obser-
vations indicate that EEG records obtained under equivalent
behavioral conditions show highly stable characteristics; for
example, Dumermuth et al. (2) showed that variations in mean
peak (beta activity) of only 0.8 Hz were obtained in a series of 11
EEGs over 29 weeks. In this respect it is interesting to consider
the studies of Jansen (3) and Grosveld et al. (4); these authors
investigated the possibility of correctly assigning EEG epochs
(duration 10.24 seconds) to the corresponding subject by means
of multivariate analysis, using half of the EEG epochs recorded
from 16 subjects as a training set for the classification algorithm.
Using 4 to 10 EEG features, it was found that in 80% to 90% of
the cases of EEG epochs were assigned correctly to the corre-
sponding subject. McEwen and Anderson (5) introduced the
concept of wide-sense stationarity in EEG analysis; they
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 proposed a procedure for determining whether a set of signal
samples (e.g., an EEG signal) can be considered to belong to a
wide-sense stationarity process. Their procedure consisted of
calculating the amplitude distributions and power spectra of
sample subsets and showing that they do not differ significantly
using the Kolmogorov–Smirnov statistic. From this study it was
concluded that, for EEG epochs (awake condition or during
anesthesia) of less than 32 seconds, the assumption of wide-
sense stationarity was valid more than 50% of the time.

On the basis of this type of empirical observation, it can be
assumed that relatively short EEG epochs (~10 seconds)
recorded under constant behavioral conditions are quasi-sta-
tionary. Elul (6) remarked that the EEG is related to intermit-
tent changes in the synchrony of cortical neurons; thus, he
characterized the EEG as a series of short epochs rather than a
continuous process.

The fact that EEG signals have different characteristics
depending on the place over the head where they are recorded
is essential to all EEG recordings. Therefore, in any method of
EEG analysis, topographic characteristics have to be taken into
account. This means that one should choose EEG montages
carefully, in view of the objectives of the analysis. The topo-
graphic aspects appear most clearly in the simple case of com-
paring EEG records from symmetric derivations; indeed, the
use of the subject as his or her own control through right–left
comparisons is a cornerstone of the neurologic examination.
Therefore, right–left comparisons are also paramount in any
practical clinical system of EEG analysis. 

BASIC STATISTICAL PROPERTIES

Some of the underlying assumptions of the most common
methods of EEG analysis will be discussed briefly. Gasser (7)
has provided a more fundamental discussion of this topic; here,
general concepts will suffice.

The exact characteristics of EEG signals are, in general
terms, unpredictable. This means that one cannot foresee pre-
cisely the amplitude of an EEG graphoelement or the duration
of an EEG wave. Therefore, it is said that an EEG signal is a
realization of a random or stochastic process. Indeed, it is pos-
sible to determine some statistical measures of EEG signals
that show considerable regularity, such as an average ampli-
tude or an average frequency. This is a general characteristic of
random processes, which are characterized by probability dis-
tributions and their moments (e.g., mean, variance, skewness,
and kurtosis) or by frequency spectra or correlation func-
tions. Such a description of an EEG signal as a realization of a
random process implies a mathematical, but not a biophysi-
cal, model.

It should be stressed (8) that the biophysical process
underlying EEG generation is not necessarily random in
nature, but it may have such a high degree of complexity that
only a description in statistical terms is justified. Gasser (7)
has also emphasized this point; even in the case of signals that
are deterministic (e.g., sinusoids) but very complex (e.g.,
made of many components), a stochastic approach may be
the most adequate.

EEG signals are, of course, time series; they are characterized
by a set of values as a function of time. An important problem,
however, is whether the general methods for analyzing time
series can be applied without restrictions to EEG signals.

In Chapter 4, which discusses EEG dynamics, it was men-
tioned that modern mathematical tools are being used to ana-
lyze EEG signals, assuming that signal generation can be
described using sets of nonlinear differential equations. These
techniques have been developed within the active field of math-
ematical research called “deterministic chaos.” In essence, non-
linear dynamical systems such as the neuronal networks
generating EEG signals can display chaotic behavior; that is,
their behavior can become unpredictable for relatively long
periods, and EEG signals may be an expression of chaotic
behavior. Since new mathematical tools, based on the analysis
of complex nonlinear systems such as the correlation dimen-
sion, were introduced in EEG, it became clear that EEG signals
may be high-dimensional so that in many cases it is difficult, or
even impossible, to distinguish whether these signals are gener-
ated by random or by high-dimensional nonlinear determinis-
tic processes (9).

SAMPLING, PROBABILITY DISTRIBUTIONS,
CORRELATION FUNCTIONS, AND SPECTRA

EEG signals are continuous variations of potential as a function
of time. However, in most practical cases where quantitative
analysis is applied, signals must be digitized so that they can be
processed by digital computer. This means that the EEG signal
must be processed in such a way that the random variable,
potential as a function of time, will have only one set of discrete
values at a set of discrete time instances. In technical terms, the
process of analog-to-digital (AD) conversion involves sampling
combined with the operation of quantizing. According to defi-
nitions commonly used (10), sampling is the “process of
obtaining a sequence of instantaneous values of a wave at regu-
lar or intermittent intervals” and quantization is the “process in
which the continuous range of values of an input signal is
divided into nonoverlapping subranges and to each subrange a
discrete value of the output is uniquely assigned.”

EEG signal sampling must be performed without changing
the statistical properties of the continuous signal. Generally, one
samples an EEG signal at equidistant time intervals (�t), thus
transforming the continuous signal into a set of impulses with
different heights separated by intervals �t (Fig. 54.1). An impor-
tant question is the choice of the sampling frequency. This
choice is based on the sampling theorem: assuming that a signal
x(t) has a frequency spectrum X(f) such that X(f) = 0 for fN, no
information is lost by sampling x(t) at equidistant intervals �t
with fN = 1/(2 �t); fN is called the folding or Nyquist frequency.
The sampling frequency, therefore, must be at least equal to 2fN.
A consequence of this theorem is that care has to be taken to
ensure that the signal to be sampled has no frequency compo-
nents above fN. Therefore, before sampling, all frequency com-
ponents greater than fN should be eliminated by low-pass
filtering. One should keep in mind that sampling at a frequency
below 2fN is not equivalent to filtering; it would produce aliasing
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or signal distortion due to folding of frequency components
larger than fN onto lower frequencies (11). The analog voltages
of the signal at the sampling moments are converted to a num-
ber corresponding to the amplitude subrange or level. Most EEG
analysis can be performed using 512 to 2048 amplitude levels
(i.e., 9 to 11 bits). Technical details of AD conversion may be
found in Susskind (12) and, for the special case of EEG signals,
in Lopes da Silva et al. (11) and Steineberg and Paine (13).

The continuous EEG signal is thus replaced by a string of num-
bers x(ti) representing the signal amplitude at sequential sample
moments; the latter are indicated by the index i along the time
axis. The signal is assumed to be a realization of a stationary ran-
dom process x(ti), which is indicated by underlining the letter (x).
In general, a collection of EEG signals of a certain length recorded
under equivalent conditions is available for analysis. The entire
collection of EEG signals is called an ensemble; each member of
the ensemble is called a sample function or a realization.

PROBABILITY DISTRIBUTIONS

The digitized EEG signal values x(ti) can be considered realiza-
tions of one stochastic variable x(ti) and may be characterized
when stationarity is assumed by a histogram; when in an inter-
val 0 � t � T there are na sample points in the interval a
� 1/2�, na/N is called the relative frequency of occurrence of
the value a, where N is the total number of samples available.
One can define the relative frequencies of all other values simi-
larly. When N becomes infinitely large and � infinitely small,
na/N will tend to a limit value p(x(ti) = a), called the probability
of occurrence of x(ti) = a. The set of values of p(x(ti)) is called
the signal probability distribution, characterized by a mean and
a number of moments. Considering that the discrete random
variable x can take any of a set of values from 1 to M, the mean
or average of the sample functions is given as follows (E is the
symbol for expectation):

(54.1)E[x(ti) ] � c a
M

a�1
a # p(x(ti) � a) d � mi

Also definable is a class of statistical functions characteristic
of the random process: mn = E[xn(ti)] with n = 1, 2, 3, …; these
functions are called the nth moments of the discrete random
variable x(ti). The implicit assumption here and in the follow-
ing discussion is that the statistical properties of the signal do
not change in the interval T. Therefore, the moments are inde-
pendent of time ti.

The first moment E[x(ti)] is called the mean of x(ti). It is
often preferable to consider the central moments (i.e., the
moments around the mean); the second central moment is
then:

(54.2)

or �2 or variance of x(ti).
Similarly, the third central moment E[(x(ti)–(E(x(ti)))3] =

m3 can be defined; from this can be derived the skewness
factor �1 = m3/(m2)3/2. The fourth central moment is
E[(x(ti)–(E(x(ti)))4] = m4, from which can be derived the kur-
tosis excess: �2 = m4/(m2)2. In case of a symmetric amplitude,
distribution is �1 = 0; all odd moments are equal to zero. For a
gaussian distribution the even moments have specific values,
for example, �2 = 3; derivatives from this value indicate the
peakedness (�2 � 3) or flatness (�2 � 3) of the distribution
(Fig. 54.2).

E[(x(ti) 	 E(x(ti) ))2 ] � m2

Figure 54.1 Analog-to-digital (AD) conversion of the continuous
 signal is performed at equidistant time intervals, digitizing its amplitude
according to the corresponding quantizing levels. (Adapted from Lopes
da Silva FH, Cooper R, Dumermuth G, et al. Sampling, conversion, and
measurement of bioelectrical phenomena. In: Remond A, ed-in-chief;
Brazier MA, ed. Handbook of Electroencephalography and Clinical
Neurophysiology. Vol 4. Part A. Amsterdam: Elsevier; 1976.)

Figure 54.2 Examples of EEG signals with corresponding amplitude
distributions. For the EEG signals, the time marks along the horizontal
axis give the intervals in seconds; the vertical axis is in microvolts; for
the amplitude distributions, the horizontal axis is in microvolts, and the
vertical axis gives the number (N) of times a certain amplitude class has
been measured in the corresponding EEG epoch. The signals were sam-
pled at 20 Hz. The amplitude distribution of the four EEG signals has
the following values of skewness (S) and kurtosis (K): (A) S = 0.17, K
= 3.09; (B) S = 0.09, K = 2.41; (C) S = 0.10, K = 3.37; (D) S = 0.07,
K = 2.98. The hypothesis that the amplitude distribution belongs to a
normal distribution can be rejected at P � 0.01 whenever S � 0.464
and/or 2.45 � K � 4.13 with N = 160.
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CORRELATION FUNCTIONS AND SPECTRA

In general terms, successive values of a signal, such as an EEG,
which result from a stochastic process are not necessarily inde-
pendent. On the contrary, it is often found that successive discrete
values of an EEG signal have a certain degree of interdependence.
To describe this interdependence, one may compute the signal
joint probability distribution. As an example, consider the defini-
tion of the joint probability applied to a pair of values at two dis-
crete moments, x(t1) and x(t2); assume that one disposes of N
realizations of the signal; the number of times that at t1 a value v
and at t2 a value u are encountered is equal to n12. Thus, the joint
probability of x(t1) and x(t2) = u may be defined as follows:

(54.3)

A complete description of the properties of the signal gener-
ated by a random process can be achieved by specifying the
joint probability density function:

(54.4)

for every choice of the discrete time samples t1, t2, …, tn and for
every finite value of n. The computation of this function, how-
ever, is rather complex. A simpler alternative to this form of
description is to compute a number of averages characteristic of
the signal, such as convariance, correlations, and spectra. These
averages do not necessarily describe a stochastic signal com-
pletely, but they may be very useful for a general description of
signals such as EEG.

The convariance between two random variables at two time
samples x(t1) and x(t2) is given by the following expectation:

(54.5)

Estimating the covariance between any two variables x(t1)
and x(t2) requires averaging over a umber of realizations of an
ensemble. Another way to estimate the convariance, provided
that the signal is stationary and ergodic (for a discussion of
these concepts see Ref. 14), is by computing a time average, for
one realization of the signal, of the product of the signal and a
replica of itself shifted by a certain time 
k along the time axis.
This time average is called the autocorrelation function:

(54.6)

where 
k = k•�t.

The following description considers continuous random
variables x(t), for the sake of simplifying the formulas. Assuming
that every sample function, or realization, is representative of the
whole signal being analyzed, it can be shown that for stationary
and ergodic processes the time average �xx(
) for one realization
x(t) is an estimate of the ensemble average Rxx(
):

(54.7)

p(x(ti) � v,x(t2) � u) � Lim 
NSq

n12

N

� ((x(t1),x(t2), p ,x(tn))

E[(x(t1) 	 E(x(t1)))(x(t2) 	 E(x(t2))) ]

£xx(
k) � �x(ti)x(ti 
 
k)� �
1

Ta
N

i�1
x(ti)x(ti 
 
k)

Rxx(t) � E[x(t)x(t 
 t) ]

assuming that the signal x(t) has mean zero. For the value 
 = 0:

(54.8)

which is the signal’s average power or variance �. An important
property of the autocorrelation function is that its Fourier
transform (FT) is:

(54.9)

Sxx(f) is called the power density spectrum, or simply the
power spectrum, a common method of EEG quantification
(Fig. 54.3). The power spectrum Sxx(f) is a function of frequency
(Hz); it gives the distribution of the squared amplitude of differ-
ent frequency components. It should be noted that the word
power does not have the meaning of dissipated power in an RC
circuit but is used here in another sense. This discussion deals
with a question of time series analysis. In general, a stochastic

RXX(0) � E[x2(t) ] � Lim 
TSq

1

2T �
T

	T
x2(t)dt

Sxx(f) � �
q

	q

R(
)exp(	j2�f
)d
 � FT(Rxx(
))
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Figure 54.3 The power spectrum of an EEG signal is shown in the
lower left plot; vertical axis power indicated here as R(f); horizontal axis
frequency, f, in hertz. On the lower right the corresponding autocorre-
lation function r(
) is plotted. The power spectrum and autocorrelation
functions are considered to be composed of three components (�, �, �)
corresponding to three EEG frequency bands. (Adapted from Zetterberg
LH. Experience with analysis and simulation of EEG signals with para-
metric description of spectra. In: Kellaway P, Petersén I, eds.
Automation of Clinical Electroencephalography. New York, NY: Raven;
1973:161–201.)
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time function may be expressed in one of the several ways, as a
voltage, a length, a velocity, a number of occurrences of a cer-
tain event, and so forth. The power spectrum or simply the
spectral density of the time function is the FT of the autocorre-
lation function, the dimension of which is the function’s ampli-
tude dimension squared. In case the signal dimension is in
volts, the power spectrum is in (V2•sec) or (V2/Hz). Of course,
if the function’s amplitude is in any other dimension, the inten-
sity of the corresponding power spectrum would be yet another
dimension. It is useful to keep a clear distinction between electric

power dissipated in an electric circuit (P � 1/T �T

0
V2/Rdt with

units [V2•sec/�]) and power spectrum.

A function that represents the average correlation between
two signals x(t) and y(t) may be defined in terms equivalent to
expression 54.7:

(54.10)

where the signals x(t) and y(t) are assumed to have means of
zero. Rxy(
) measures the correlation between the two signals
and is called the cross-correlation function. Similarly, one can
define the FT of Rxy, which is the cross-power spectrum between
signals x and y:

(54.11)

Fundamental discussions of power spectra and related top-
ics are found in many textbooks on signal analysis, for example,
Refs. 15 and 14. This discussion cannot go into details about
ways of Bendat and Piersol (16) and Otnes and Enochson (17).
Application of the frequency analysis principle to EEG signal
analysis has a long history, beginning with the pioneering work
of Dietsch (18), Grass and Gibbs (19), Knott and Gibbs (20),
Drohocki (21), and Walter (22,23). Brazier and Casby (24) and
Barlow and Brazier (25) first computed the autocorrelation
functions of EEG signals. The general principles on which this
work has been based have remained essentially the same since
Wiener proposed these signal analysis methods (for a review,
see Ref. 26). An important advance in computing power spec-
tra has been achieved with the introduction of a new algorithm
for computing the discrete Fourier transform, known as the fast
Fourier transform (FFT) (27). In this case, it is assumed that one
wants to compute the power spectrum of a discrete EEG signal;
the epoch [x(t1)] is considered as a signal sampled at intervals
�t, x(n �t) with a total of N samples (n = 1…N). By using the
discrete   FT, the so-called periodogram F(fi) can be computed:

(54.12)

where fi = i � �f with i = 0, 1, 2, …, N. The periodogram can be
smoothed by means of a window W(fk) in order to obtain Pxx(fk),
which is a better estimate of the real power spectrum Sxx(f):

(54.13)

Rxy(t) � E[x(t)y(t 
 t) ]

Sxy(f) � FT[Rxy(t) ]

Fxx(fi) �
¢t

N
` a

N

n�1
x(tn)exp(	j2� # i¢f # n¢t) ` 2

Pxx(fi) � a
p

k�	p
W(fk)Fxx(fi
k)

where W(fk) is the smoothing window with a duration of 
(2p 
 1) samples or data points. Similarly, one can compute
a smoothed estimate of the cross-power spectrum (Sxy), which
might be called Cxy(f).

The FFT power spectral analysis and its applications are
 discussed in more detail below.

The close relationship between the concepts of variance �2,
autocorrelation (equations 54.6 and 54.7), and power density
spectrum (equation 54.9) has already been made apparent; in
fact Rxx(0) = �2 and

(54.14)

The autocorrelation function R(
) and the power density
spectrum S(f) correspond thus to the second-order moment of
the probability distribution of the random process.

In case the signals are not gaussian, higher order spectra
moments must be considered. These can be derived as follows.
Assuming that the signal has mean = 0, one can write (as in
expression 54.7):

(54.15)

Similar to expression 54.9, the two-dimensional Fourier
transform FT2 of Rxx(
1, 
2) can be defined as the bispectrum or
bispectral density:

(54.16)

This discussion cannot go into details about ways of esti-
mating the bispectrum Bxx. For a detailed account of bispec-
tral EEG analysis, refer to Huber et al. (28) and to
Dumermuth et al. (29). It is, however, interesting to note that
high Bxx values for a couple of frequencies, f1 and f2, indicate
phase coupling within the frequency triplet f1, f2, and 
(f1 
 f2). The third moment of the probability distribution,
or skewness, is related to the bispectrum. When there exists a
sufficiently strong relation between two harmonically related
frequency components in a signal, there will exist a signifi-
cant bispectrum and skewness. The process in such a case is
not gaussian; if it were gaussian with mean zero, the bispec-
trum would be zero. The bispectrum can be used to deter-
mine whether the system underlying the EEG generation has
nonlinear properties. An example of this form of analysis is
given in Figure 54.4.

This section has demonstrated the progression from the
basic principles of probability distribution and corresponding
moments to the concepts of autocorrelation, power spectra,
and high-order spectra. It is also of interest to examine the
moments of the spectral density Sxx(f), because this analysis
leads to another set of concepts applicable to EEG analysis, the
so-called descriptors of Hjorth (30). Thus, one can define the
nth spectral moment as follows:

(54.17)

s2 � �
q

	q

Sxx(f)df

Rxx(t1,t2) � E[x(t)x(t1)x(t 
 t2) ]

Bxx(f1,f2) � FT2[Rxx(t1,t2) ]

an � �
q

	q

(2�f)nSxx(f)df
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The zero-order moment is then:

(54.18)

which is equal to the variance �2.

It can be shown (for derivation, see Ref. 31) that the second-
order moment is defined by the following expression:

(54.19)

and the fourth-order moment is:

(54.20)

In this way the spectral moments relate to the derivatives of
the autocorrelation function Rxx(
) and of the signal x(t). The

a0 � �
q

	q

Sxx(f)df

a2 � �
q

	q

(2�f)2Sxx(f)df � 	
d2Rxx(t)

dt2 `
t�0

� E c dx(t)

dt
d 2

a4 � �
q

	q

(2�f)4Sxx(f)df � 	
d4Rxx(
)

d
4 `
t�0

� E c d
2x(t)

dt2 d
2

discussion below illustrates how these spectral moments a0, a2,
and a4 are related to the descriptors proposed by Hjorth.

INTERVAL OR PERIOD ANALYSIS

An alternative method of EEG signal analysis is based on meas-
uring the distribution of intervals between zero and other level
crossings, or between maxima and minima. 

A level crossing may be defined in general terms as the time
at which a signal x(t) passes a certain amplitude level b; b � 0 is
a special case referred to as zero crossing (Fig. 54.5). Knowledge
of the probability density function of the intervals between suc-
cessive zero crossings can be useful in characterizing some statis-
tical properties of the signal x(t) (mean value 0). p0(
) can be
called the probability distribution density function of the inter-
vals between any two successive zero crossings and p1(
), corre-
sponding to the total time 
 between successive zero crossings at
which the signal changes in the same direction (i.e., from posi-
tive to negative or vice versa). In practice, these functions can be
approximated by computing histograms of the interval length
between two successive zero crossings or between zero crossings
at which the signal has a derivative with the same sign. The
moments of the distribution function can also be computed; the
simplest case is to compute the average number of zero crossings
per time unit (N0) (e.g., per second) of the signal x(t):

Figure 54.4 Contour map of the normalized bispectrum (also called
bicoherence) of an EEG signal recorded from a subject who presented
an alpha variant (the corresponding power spectrum is shown in Fig.
54.8). The plot shows three maxima in the value of bicoherence
(�0.25). One is at the intersection of approximately 5 and 5 Hz (phase
coupling between 5, 5, and 10 Hz); another one is at the intersection of
about 7 and 7 Hz (phase coupling between 7, 7, and 14 Hz). Still
another is at the intersection of about 10 and 10 Hz (phase coupling
between 10, 10, and 20 Hz). This means that the two peaks seen in the
power spectrum of Figure 54.8 at 5 and 10 Hz, respectively, are harmon-
ically related, that is, 5 Hz is one-half subharmonic of the dominant
alpha frequency. Moreover, there is another component at 20 Hz, diffi-
cult to see in the power spectrum, of Figure 54.8, which is also harmon-
ically related to the alpha frequency (i.e., a second harmonic of the
alpha component is also present). Another component at about 7 Hz
related to 14 Hz can also be identified. (This component may be distin-
guished as a small notch at the flank of the 10-Hz peak in the power
spectrum of Fig. 54.8.)

Figure 54.5 A: An EEG signal x(t). B: Plot of the corresponding power
spectrum w(f) as function of frequency f in hertz. C: Plot of the autocor-
relation function (
). D: Plot of p0(
) (i.e., the distribution density function
of the intervals between any two successive zero crossing). E: Plot of p1(
)
(i.e., the distribution density function of the time between successive zero
crossings at which the signal x(t) changes in the same direction, from pos-
itive to negative or vice versa). (Illustration courtesy of R.A.F. Pronk.)
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(54.21)

This means that the number of zero crossings per time unit
N0 equals the reciprocal of the mean interval length 
.

In some cases it is helpful to determine the probability density
function of the intervals between two adjacent zero crossings
where the sign of x(t) changes from negative to positive or vice
versa. In this case, it is necessary to compute additionally the zero
crossing interval distribution of the first derivative of x(t), y(t)
(i.e., y(t) = dx(t)/dt). If the signal x(t) to be analyzed is quasi-sta-
tionary and has a gaussian distribution, a mathematical relation
between Nk, the average rate of zero crossings of the kth deriva-
tive of x(t), and the power spectrum Sxx(f) can be shown (32–34):

(54.22)

In interval analysis, only the values Nk for k = 0, 1, 2 are usu-
ally computed. N0 thus represents the average rate of zero cros -
sings of dx(t)/dt (i.e., the rate of intervals between extremes of
the signal x(t)); N2 represents the average rate of zero crossings
of d2x(t)/dt2 (i.e., the rate of intervals of the a nonparametric or
a parametric approach that is combined inflection points
of x(t)).

It can be shown (32) that expression 54.22 can separately
also be given in terms of the autocorrelation function:

(54.23)

where fg is the so-called gyrating frequency (35).
These relations between the number of zero crossings per

time unit and either spectral moments or the autocorrelation
function for EEG signals have been studied in detail by
Saltzberg and Burch (36), who concluded that, when the pur-
pose is to monitor long-term changes in the statistical proper-
ties of EEG signals, it is legitimate to use average zero-crossing
rates to calculate moments of the power spectral density.

Instead of measuring intervals between zero crossings, one can
characterize a signal by determining intervals between successive
maxima (or minima), which defines a “wave,” or between a max-
imum and the immediately following minimum or vice versa,
which defines a “half-wave.” The section “Mimetic Analysis” con-
siders some of the variants of interval analysis as applied to EEG
signals; the straightforward applications of interval analysis are
described in the section “Time–Frequency Analysis.”

EEG SIGNAL PROCESSING 
METHODS IN PRACTICE

The previous section considered the statistical properties of
EEG signals as realizations of random processes, explaining
how such signals can be characterized by the corresponding
probability distribution and its moments, by the autocorrela-

N	1
0   � 
 � �

q

0

p0(
)d


Nk � 4 ≥ �
q

0
f 2k
2Sxx(f)df

�
q

0
f 2kSxx(f)df

¥
1>2

N0

2
 � c (�
)2 c 1 	

Rxx(
)

Rxx(o)
d d 1>2 � fg

tion function or the power spectrum, or by distribution of
intervals between level crossings. In all cases, the EEG was
treated as a stochastic signal without a specific generation
model. Therefore, all the previously described methods and
related ones are nonparametric methods. Parametric methods
may also be used to analyze EEG signals; in such cases one
assumes the EEG signal to be generated by a specific model. For
example, assuming that the EEG signal is the output of a linear
filter given a white noise input allows characterization of the
linear filter by a set of coefficients or parameters (e.g., it may
correspond to an autoregressive model as explained below).

Therefore, EEG analysis methods can be divided into two
basic categories, parametric and nonparametric. Such a division
is conceptually more correct than the more common differen-
tiation between frequency and time domain methods because,
as has been explained, such methods as power spectra in the
frequency domain and interval analysis in the time domain are
closely related; indeed, they represent two different ways of
describing the same phenomena. The methods of EEG analysis
described here are classified as shown in Table 54.1.

Not all EEG analysis methods can be assigned to one of the two
general categories just described. Those having mixed character
(i.e., methods that have, as a starting point, a nonparametric or
parametric approach that is combined with pattern recognition
techniques) must be considered separately. The latter fall into the
category of pattern recognition methods. Last, this section shall
discuss topographic analysis methods, in which the emphasis is on
topographic relations between derivations. Not included here are
the evoked potentials, which are discussed elsewhere.

A thorough review of the main techniques currently in use
in EEG analysis has been edited by Gevins and Remond (37).
For more details on methods of analyzing brain electric signals,
the reader is referred to this authoritative handbook.

Table 54.1

EEG Analysis Methods

Nonparametric Methods

Amplitude distributions

Interval or period distributions

Amplitude–interval scatter plots

Correlation functions

Auto- and cross-correlation

Complex demodulation

Power spectral analysis

Time-varying spectra

Cross-spectral functions (coherence and phase)

Bispectra

Walsh and Haar transforms

Hjorth slope descriptor
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NONPARAMETRIC METHODS

Amplitude Distribution
A random signal can be characterized by the distribution of
amplitude and its moments. An example of an amplitude distri-
bution is shown in Figure 54.2. The first question that is asked
regarding the amplitude distribution of an EEG epoch is whether
the distribution is normal or gaussian. The most common tests of
normality are the chi-square goodness-of-fit test (17), the
Kolmogorov–Smirnov test, or the values of skewness and kurtosis
(7,38). It has been shown (39) that, for the small EEG samples
usually analyzed, the Kolmogorov–Smirnov test is more powerful
than the chi-square test. It should be emphasized that in order to
apply these tests of goodness-of-fit, two requirements must be sat-
isfied: stationarity and independence of adjacent samples. The
first requirement was considered in the previous sections. The sec-
ond requirement is a well-known prerequisite for the application
of the statistical tests of the type we consider here. Persson (40)
has clearly pointed out the pitfalls of applying goodness-of-fit
tests to EEG amplitude distributions. The problem is that the EEG
signals are usually recorded at such a sampling rate that, depend-
ing on the spectral composition of the signal, adjacent samples are
more or less correlated. In this way, the second requirement is
commonly violated. This has also been shown clearly by McEwen
and Anderson’s (5) statistical study of EEG signals. The degree of
correlation between adjacent samples can be deduced from the
autocorrelation function. Persson found that a correlation coeffi-
cient of 0.50 or larger for adjacent samples introduces a consider-
able error in interpreting a goodness-of-fit test. His experience
with EEG signals led to the conclusion that sampling rates in most
cases should be restricted to about 20/sec in order to achieve an
acceptably small degree of correlation between adjacent samples.

It is of general interest to know an EEG sample’s type of ampli-
tude distribution. Several studies have been carried out, mainly
investigating whether or not EEG amplitude distributions were
gaussian. Saunders (41), using a sample rate of 60/sec, epoch
lengths of 8.33 seconds, and the chi-square test, concluded that
alpha activity had a gaussian distribution; this confirmed previous
results from Lion and Winter (42) and Kozhevnikov (43), who
used analog techniques. On the contrary, Campbell et al. (44),
using a sample rate of 125/sec, epoch lengths of 52.8 seconds, and
the chi-square test, concluded that most EEG signals had non-
gaussian distributions; however, it is likely that in this case the dual
requirements of stationarity and independence were not met.

The results obtained by Elul (45) are of special interest
because he examined EEG time-varying properties using ampli-
tude distributions for epochs of 2 seconds (200 samples/sec, chi-
square goodness-of-fit test); this study most certainly failed to
meet the requirement of independence. Nevertheless, Elul found
that a resting EEG signal could be considered to have a gaussian
distribution 66% of the time, whereas, during performance of a
mental arithmetic task, this incidence decreased to 32%.
Evaluating a small series of waking EEGs in twins, Dumermuth
(46,47) found amplitude distribution deviations from gaussian-
ity in the majority of the subjects; he tested the normality
hypothesis by way of the third- and fourth-order moments,
skewness, and kurtosis. In adult sleep EEG, skewness and

 kurtosis also deviated significantly from the values expected for a
gaussian distribution depending on sleep stage (48,49). These
observations have led to a study of higher order moments of the
spectral density function using bispectral analysis.

The method recommended to test whether EEG amplitude
distributions are gaussian is that proposed by Gasser (7,38); it
involves calculating skewness and kurtosis after correction in
view of the possibility that adjacent samples may have a large
(e.g., �0.50) degree of correlation. The allowed kurtosis and
skewness values can be found in statistical tables. Kurtosis in
most cases without paroxysmal activity or artifacts is within the
limits allowed to accept the normality hypothesis; skewness dif-
ferent from zero is encountered particularly in those cases in
which harmonic components are present in the power spectra.
In such instances, the bispectrum exists (see below).

An alternative method of calculating measures of EEG ampli-
tude was developed by Drohocki (50) and is used mainly in psy-
chopharmacologic and psychiatric studies (see review in Ref. 51).
This method involves measuring the surface of rectified EEG
waves. Its usefulness for routine EEG analysis is limited.

Interval Analysis
Interval or period analysis has been used, as described above, to
study the statistical properties of EEG signals in general and in
relation to other analysis methods, such as autocorrelation func-
tions and power spectra. This discussion considers a more prac-
tical aspect, the simplicity of evaluating EEG signals using
interval analysis. The method, as originally applied by Saltzberg
et al. (52) and Burch et al. (53), has been shown to be useful pri-
marily in quantifying EEG changes induced by psychoactive
drugs (54–57), monitoring long-term EEG changes during anes-
thesia (58,59), psychiatry (60), and sleep research (see Ref. 35).

When using interval analysis, it is good practice to compute
not only the zero crossings of the original EEG signal, but also
those of the signal’s first and second derivatives, to obtain more
information about the spectral properties of the signal. One
disadvantage of this method is sensitivity to high-frequency
noise in the estimation of zero crossings. This problem can be
avoided by introducing hysteresis, that is, by creating a dead
band (e.g., between 
a and –a �V) so that no zero crossing can
be detected when the signal has an amplitude between those
limits. In this way, Pronk et al. (58) have found that a dead band
between 
3 and –3 �V is a good practical choice. Another dis-
advantage is that, when examining histograms of zero-crossing
counts, it is easy to underestimate the contribution of low-
 frequency components, of which there may be very few, and to
overestimate fast frequency components. These disadvantages
are particularly evident when zero-crossing histograms and
power spectra of the same signal are compared as shown in
Figure 54.6 (61). Sometimes corrections are made to enhance
the number of long intervals in relation to the short ones, but
this may complicate the interpretations even more.

Another approach is to compute zero-crossing intervals only
within determined frequency bands; this may solve the problem
of missing superimposed waves (62,63).

The main advantage of zero-crossing analysis is ease of com-
putation, which makes this method particularly attractive for
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the online quantification of very long EEG records, for exam-
ple, during sleep or intensive monitoring. To perform interval
analysis, it is useful to combine it with prefiltering (31) in the
analysis of narrow-band signals.

Interval–Amplitude Analysis
Interval–amplitude analysis is the method by which the EEG is
decomposed in waves or half-waves, defined both in time, by

the interval between zero crossings, and in amplitude by the
peak-to-trough amplitudes. This hybrid method had been pro-
posed repeatedly in the past by Marko and Petsche (64), Leader
et al. (65), Legewie and Probst (62), and Pfurtscheller and Koch
(66); it has been applied intensively in a clinical setting by
Harner (67) and Harner and Ostergren (68). The latter called
this method “sequential analysis” because the amplitude and
interval duration of successive half-waves are analyzed, dis-
played, and stored in sequence in real time. The method used by
these authors requires that the sampling rate be at least 250/sec,
the zero level be updated continuously by estimating the run-
ning mean zero level, and, as just discussed, there be a dead
band to avoid the influence of high-frequency noise. The high-
frequency sampling is desirable in order to obtain a relatively
accurate estimate of the peaks and troughs. The amplitude and
the interval duration of a half-wave are defined by the
peak–trough differences in amplitude and time; the amplitude
and the interval duration of a wave are defined by the mean
amplitude and the sum of the interval durations of two consec-
utive half-waves. These data are displayed in a scatter diagram
as illustrated in Figure 54.7.

Figure 54.6 Two examples for comparison of iterative interval analysis
and power spectra of the same EEG signals. The intervals are plotted as
inverse frequencies. The agreement is fairly good in the case presented
above; a pronounced rhythmic component (peak at about 11 Hz) is pres-
ent. However, in the plot below, the interval analysis emphasizes in a
marked way the high-frequency components. (Adapted from Matejeck M,
Schenk GK. Die iterative Intervall-Analyse-Ein methodischer Beitrag zur
Quantitativen Beschreibung des Elektroenzephalogramms in Zeitbereich.
In: Schenk GK, ed. Die Quantifizierung des Elektroenzephalogramms.
Konstanz: AEG Telefunken; 1973:293–306.)

Figure 54.7 A display of sequential analysis obtained in real time. The
dots represent individual half-waves displayed within 2 msec of their
occurrence in each of the eight channels. The distribution of dots, for
example, in the 8- to 16-Hz range (frequency equivalents of wavelength
are used) gives an indication in amplitude and frequency of the alpha
rhythm. Side-by-side comparison of homologous areas allows assess-
ment of symmetry. Marking in y-axis indicates 50 �V. (Illustration cour-
tesy of R.N. Harner; also in Lopes da Silva FH, Cooper R, Dumermuth
G, et al. Sampling, conversion, and measurement of bioelectrical phe-
nomena. In: Remond A, ed-in-chief; Brazier MA, ed. Handbook of
Electroencephalography and Clinical Neurophysiology. Vol 4. Part A.
Amsterdam: Elsevier; 1976.)
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Correlation Analysis
In practical terms, the computation of correlation functions in
the 1950s and 1960s constituted the forerunner of contemporary
spectral analysis of EEG signals (25,69,70) and provided an
impetus to implement EEG quantification in practice. However,
the computations were time-consuming and therefore not widely
used. A simplified form of correlator was introduced, based on
the fact that auto- or cross-correlation functions can be approxi-
mated by replacing the signals x(t) and x(t 
 
) (see equation
54.4) by their signs (sign x(t) and sign x(t 
 
), where sign x(t) =

1 for x(t) � 0 and sign x(t) = –1 for x(t) � 0), as demonstrated
by McFadden (71). The function thus defined is called the polar-
ity coincidence correlation function, and it has proved useful in
EEG analysis (72–74). Another simplified form of EEG analysis
that is akin to correlation has been used by Kamp et al. (75) and
Lesèvre and Remond (76). It can be called autoaveraging and
consists of making pulses at a certain phase of the EEG (e.g., zero
crossing, peak, or trough) that are then used to trigger a device
that averages the same signal (autoaveraging) or another signal
(cross-averaging). In this way, rhythmic EEG phenomena can be
detected and some characteristic measures obtained.

However, correlation analysis has lost much of its attractive-
ness for EEG analysts since the advent of FT computation of
power spectra. The latter technique is less time-consuming and
therefore more economical, and, in general terms, more power-
ful. Above all, it is difficult to determine from an autocorrelation
function EEG components when the signals contain more than
one dominant rhythm, an investigation that can be done simply
by using the power spectrum (Fig. 54.8). Nevertheless, it should
be noted that the simplified methods of correlation analysis just
described and used in the 1960s can still have practical value in
simple problems, such as computing an alpha average.

The computation of autocorrelation functions has been
revived due to the introduction of such parametric analysis
methods as the autoregressive model, which, as described
below, implies the computation of such functions. Michael and
Houchin (77) have even proposed a method of segmenting
EEG signals based on the autocorrelation function.

Related to correlation functions is the method of complex
demodulation (78). With this method, a particular frequency com-
ponent (e.g., ~10 Hz) can be detected and followed as a function
of time. In this case, a priori knowledge of the component to be

Figure 54.8 Left-hand column: Different ways of plotting
the spectrum of the same EEG epoch, the bicoherence of
which is shown in Figure 54.4. First plot: y-axis, power in
dB, and x-axis, frequency (Hz) along a linear scale; the
90% confidence band of the spectral estimate is indicated.
Second plot: y-axis, power in �V2/Hz, and x-axis as above.
Third plot: y-axis, power in dB, and x-axis, frequency (Hz)
logarithmic scale (this way emphasizes somewhat the low-
frequency components). Fourth plot: y-axis, power in
�V2/Hz, and x-axis, frequency (Hz) along a logarithmic
scale. Right-hand column: First plot: squared coherence
(Coh or (�2)) between two symmetric EEG signals; the
power of one is shown in the plots on the left side. Second
plot: the same function as above; along the vertical axis the
z transformed coherence is plotted, z = (1/2)ln((1 
 �)/
(1 – �)); the advantage of this form of presentation lies in
the fact that, in this case, the confidence bands are the
same for the whole curve and are not dependent on
the value of 2. Third plot: phase spectrum corresponding to
the coherence spectrum shown above.
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analyzed is necessary. Assuming, thus, that in an EEG signal a
component at about 10 Hz exists and should be followed, one can
set an “analysis oscillator” at 10 Hz; the oscillator output and the
signal are then multiplied. The product contains components at
the sum frequency (~20 Hz) and at the difference frequency (~0
Hz). This product is smoothed so that only the difference compo-
nents (at about 0 Hz) are considered. In this way, phase and
amplitude of EEG frequency components can be detected and
their modulation in time determined. Complex demodulation
has been used to analyze rhythmic components of visual poten-
tials (79) and sleep spindles (80). This method is similar to a direct
Fourier analysis in which an EEG signal is multiplied by sines and
cosines at a particular frequency in the study of evoked potentials
(81) and also the method of phase-locked loop analysis as used to
detect sleep spindles (82,83).

Power Spectra Analysis
A classical way of describing an EEG signal is in terms of fre-
quency as established by the common EEG frequency bands.
It is possible to obtain information on the frequency compo-
nents of EEG signals using interval or period analysis.
However, the most appropriate methods in this respect are
analog filtering or Fourier analysis, using either expression
54.9 (i.e., the FT of the autocorrelation function) or expres-
sions 54.12 and 54.13 (i.e., the periodogram). Several forms of
analog filtering were introduced in the early days of EEG
research; that technique reached a technical level appropriate
for clinical application mainly due to the work of Walter
(22,23). Even in the 1960s banks of active analog filters were
used to decompose EEG signals into frequency components
(84–87). In 1975, Matousek and collaborators compared ana-
log and digital techniques of EEG spectral analysis and
demonstrated clearly the superiority of digital techniques.
Digital methods are more accurate and flexible; using digital
computers simplifies multichannel analysis.

The crucial landmarks in the development of EEG quantifi-
cation methods have always followed technical advances: first,
banks of active analog filters as just described; second, large dig-
ital computers (88,89); and third, a fast algorithm for digital
computation of discrete FTs, Cooley and Tukey’s (27) so-called
FFT. The latter has since been used extensively in EEG analysis
(review in Ref. (90)).

This chapter cannot discuss the technical aspects of applying
FFT spectral analysis to EEG quantification; for these aspects,
the reader is referred to Matousek et al. (35), Dumermuth (90),
and the books of Jenkins and Watts (14), Otnes and Enochson
(17), and Gevins and Remond (37). It is sufficient to state here
that, when planning to perform FFT spectral analysis, the elec-
troencephalographer should consider the basic issues described
in the following sections.

Digitization and Prefiltering

Digitization and prefiltering were discussed in relation to the
sampling process. It is necessary to define beforehand the
 frequency range over which the spectrum should be com-
puted, not only to avoid aliasing, but also to minimize compu-
tation time.

Length

The length of the epoch T to be analyzed must be selected. It is
important to take into account that the epoch should be short
enough to avoid nonstationarity segments but long enough to
obtain the desired level of frequency resolution f; the maximum
�f is, of course, �f = 1/T. In many clinical applications one uses
T = 5 or 10 seconds.

Frequency Smoothing and Ensemble Averaging

The estimate of one frequency point of a periodogram Fxx(f1) of
one EEG epoch has a chi-square distribution with only 2 degrees
of freedom. The number of degrees of freedom must be increased
and the estimate variance reduced either by averaging for a num-
ber of equivalent epochs or by smoothing over adjacent frequency
components. Sometimes both ensemble averaging and frequency
smoothing are used. Generally, the spectral estimate Pxx(f1) (equa-
tion 54.13) should correspond to at least 60 degrees of freedom
(91), which allows acceptable estimates of spectral values. This
implies that an ensemble of at least 30 epochs should be used if
only ensemble averaging is carried out. The number of degrees of
freedom can also be increased, at the expense of frequency resolu-
tion �f, by using a spectral window W(fk) (see equation 54.13). A
spectral window is defined by its form and duration. The duration
at the base is given by the distance between truncation points.
Using a window with a large base reduces the variance but
increases the bias of the estimator. An excessively large window
decreases too greatly the equivalent frequency resolution �f. In
practice, therefore, a complex compromise between all the afore-
mentioned points must be reached. Details about the technicalities
of choosing the appropriate form W(fk) can be found in Jenkins
and Watts (14) and Künkel and EEG Project Group (92). A good
deal of freedom in the choice of the spectral window is tolerable;
the appropriate choice depends on the practical use of spectral
analysis. In EEG quantification in the clinical routine, it is com-
mon to compute average spectra by making averages of ensembles
of 10 epochs of 10 seconds (N = 1024) each, using an elliptic win-
dow five sample points wide for smoothing; the equivalent band-
width is thus 0.5 Hz. The resulting estimate corresponds,
therefore, to less than 100 (more precisely, 93) degrees of freedom,
owing to the fact that for each frequency component the power
estimate is based on 2 degrees of freedom; this number must be
multiplied by 10 (epochs), by 5 (window width), and by a factor
0.93 that corresponds to the fact that the window is elliptic.

Calibration

The dimension of power spectra in EEG analysis is intensity per
bandwidth; the unit of measurement is in V2/Hz (93).
Calibration can be carried out using sine waves, as proposed by
Abraham et al. (94), Clusin et al. (95), Dumermuth and Flühler
(96), and Matousek et al. (35); Sciarretta G, Erculiani P (97)
proposed a simple method, using a single rectangular pulse,
that has practical advantages.

Graphic Representation

The graphic representation of power spectra merits special
attention. In most instances, the EEG analyst needs a plot of
power spectra, as shown in Figure 54.8. In most cases, the
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 vertical scale is simply the spectral density as computed by way
of the Fourier coefficients (i.e., in �V2/Hz). A preferred alterna-
tive is plotting the spectral intensity along a logarithmic scale.
The advantage of choosing log power intensity instead of sim-
ply power intensity is that the confidence intervals of the for-
mer are independent of the values of the spectral intensity.
Another technique involves computing the square root of the
spectral intensity and plotting it along the vertical axis.
Frequency is usually presented along a linear scale calibrated in
hertz; however, one may prefer, if the most attention is to be
paid to the lower frequencies (delta and theta), to compress the
frequency scale in the higher frequency range by plotting log Hz
(Fig. 54.8) along the horizontal axis or a more compressed scale
for frequencies higher than, for instance, 15 Hz. The presenta-
tion of a power spectrum plotting log spectral intensity verti-
cally and frequency horizontally, and where the higher
frequency components are plotted in a more compressed way
than the lower ones, is useful in routine clinical situations.

Time-Varying Spectra

Time-varying spectra are often computed in order to analyze
more or less slowly changing EEG records. Such spectra can be
plotted simply by using the so-called compressed spectra array
(Fig. 54.9) as introduced by Bickford et al. (98,99). This method
is particularly valuable in obtaining an overall view of EEG
spectral changes for intraoperative or sleep monitoring (100).
Another form of plotting time-varying power spectra is by
using contour plots (i.e., plots of frequency against time), as
shown in Figure 54.10; in such plots, points corresponding to
equal values of power spectra computed from successive epochs
are connected by contour lines. These plots provide useful, eas-
ily interpretable visual displays of the evolution of power spec-
tra as a function of time.

The computation of time-varying power spectra is partic-
ularly important in those studies in which the problem is that

of characterizing EEG changes in relation to specific events,
such as eyes closing/opening (101), fists closing/opening
(102), word association tests (103), and similar events. The
problem here is to quantify time-locked changes in EEG
spectra by way of ensemble averaging, using a particular
event as a trigger. Kawabata (101) considered this problem
analytically and proposed a formalism to compute time-
varying EEG spectra. Using this construct, he could show that
initially at eye closure, power within the alpha band
increases, with the greatest concentration in the center

Figure 54.9 Display of a compressed spectral array showing the alpha
rhythm and the effects of various artifact-inducing maneuvers on the
background activity. Note the change in alpha peak frequency from the
eyes-closed situation when shaking occurs. Note also the influence of
artifacts in the spectra, particularly at tapping the electrodes; the large
peaks at low frequencies are artifactual. (Adapted from Bickford RG.
Computer analysis of background activity. In: Remond A, ed. EEG
Informatics. A Didactic Review of Methods and Applications of EEG Data
Processing. Amsterdam: Elsevier; 1977:215–232.)

Figure 54.10 Contour plot of power spectra: note the fre-
quency shifts and increase in power intensity occurring in
the second part of the registration. (Adapted from
Dumermuth G. Fundamentals of spectral analysis in elec-
troencephalography. In: Remond A, ed. EEG Informatics. A
Didactic Review of Methods and Applications of EEG Data
Processing. Amsterdam: Elsevier; 1977:83–105.)
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 frequency; later the center frequency shifts to a lower fre-
quency. When the eyes open, the alpha power decreases and
the center frequency increases.

Pfurtscheller and Aranibar (102) designed a method for ana-
lyzing EEG changes related to sets of stimuli such as those used
to study the phenomenon of contingent negative variation
(CNV). According to this method, the 6-second EEG epoch
occurring before and after the event of interest is subdivided
into 1-second overlapping segments. For each segment, a power
spectrum is computed; in the experiment quoted above, the
total power (0 to 32 Hz) and the power in the alpha frequency
range (7 to 13 Hz) of each segment are averaged over a number
of equivalent segments, and mean values and standard errors
calculated. In this manner, these authors demonstrated phasic
decreases of power in the alpha band related to sensory stimu-
lation and to the interstimulus interval in a CNV paradigm.
Pfurtscheller and Aranibar (104) used the same method to
study changes in central mu rhythms occurring in relation to
opening and closing the fists in normal subjects and patients
(Fig. 54.11). A large number of studies where dynamical
changes of the ongoing EEG, within different frequency com-
ponents, were detected and characterized have been revised by
Pfurtscheller et al. (105).

The fact that EEG baseline values (i.e., pre-event segments)
can change from trial to trial makes a statistical analysis based
on ensemble averages and standard deviations particularly dif-
ficult. Kamp and Vliegenthart (103) proposed resolving this
type of difficulty by analyzing EEG epochs immediately before
and immediately after the event causing the change. In this way
a pre-event epoch of, for instance, 4 seconds and a postevent
epoch of, for instance, 4 seconds are analyzed. A relatively large
number of trials are recorded, and the degree to which the spec-
tral value within a certain frequency band for each postevent
subsegment (e.g., 1-second long) differs from the pre-event
epoch evaluated using a nonparametric test (Mann–Whitney
test) (106). The end result is given as the number of trials in
which a certain frequency band changed significantly at a par-
ticular postevent segment. A similar method has been used by
Arnolds et al. (107), who compared spectral parameters of EEG
segments occurring after a behavioral event with pre-event val-
ues of the same parameter simply by using the sign test (106).
The advantages of using this type of nonparametric method
should be emphasized. Because the baseline values may vary
dramatically, one runs the risk of failing to detect real EEG
changes related to a particular event that exist if one compares
only mean values. Directly comparing within each trial the
baseline with the postevent values, particularly by means of a
nonparametric statistical test, avoids the difficulty pointed
out above.

Statistical Evaluation

Statistical evaluation of spectra is not done only in the analysis
of time averaging EEG signals as discussed previously.
Frequently, it is helpful to determine whether or not two sets of
EEG power spectra differ significantly. The sets might have
been obtained under two different behavioral conditions or
during administration of two different treatments (e.g., a
placebo or a psychotropic drug); they could have been recorded
from symmetric derivations over the scalp. The question is a
simple one. Given two sets of power spectra, how can one deter-
mine whether they belong to the same population? The answer,
however, is not so simple. To start with, it is necessary to
emphasize that the power spectrum of a certain EEG epoch is
an estimate; thus, it also has a variance. A convenient way of
presenting estimate variability is to present the corresponding
confidence bands simultaneously with the average power spec-
trum as indicated previously. The question of testing whether
the two sets of spectra belong to the same population has been
approached using a variety of methods (for references see Ref.
49). Often analysis of variance (F test) and Student t test are
applied (108). The F test in principle should be the first test
chosen, because power density is a quadratic function. If the
number of degrees of freedom increases, the power density dis-
tribution tends to normalize so that a t test can be applied.

In general, it is advisable to apply to the power spectrum a
logarithmic transformation, because it produces a symmetric
distribution. Confidence intervals for log Pxx(f) are given

approximately as (35) , where Za/2 is
the 100 alpha/2 percentage point of the standardized normal
distribution and N is the equivalent number of degrees of

logPxx(f) � Za>2(22>N)

Figure 54.11 Alpha power time course over a 6-second interval calcu-
lated during voluntary hand movement (movement onset at 4 seconds).
The scale on the left gives the percentage alpha power. Reference inter-
val 0 to 2 seconds with an absolute reference power of 6.8 �V2 corre-
sponding to 100% (this reference power corresponds to 23.8% of the
total power within the frequency band 0 to 32 Hz). The significance lev-
els for the power decrease (event-related desynchronization [ERD]) are
indicated on the right scale (10–2 corresponds to P � 0.01, etc., sign
test). Note that a decrease of alpha power is indicative for ERD.
(Adapted from Pfurscheller G, Klimesch W. Functional topography dur-
ing a visuo-verbal judgment task studied with event-related desynchro-
nization mapping. J Clin Neurophysiol. 1992;9:120–131.)
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 freedom (16). Nevertheless, in many applications, especially if
the number of degrees of freedom is small, it is preferable to
apply nonparametric tests, such as the simple sign test or the
more powerful Wilcoxon or Mann–Whitney tests. For a
detailed analysis of the questions of statistical inference on EEG
data, the reader is referred to Gasser (7,109). This problem has
been discussed in detail in relation to those psychopharmaco-
logic investigations in which EEG plays a central role
(56,57,60,110), but these aspects are too specialized to be con-
sidered here.

Cross-Spectral Analysis

Cross-spectral analysis is an important part of EEG spectral
analysis because it allows quantification of the relationships
between different EEG signals. The section “Basic Statistical
Properties” mentioned the smoothed estimate of the cross-
power spectrum Cxy(f); this quantity is the product of the
smoothed discrete FT of one signal and the complex conjugate
of the other (see for details Ref. 14). Cxy(f) is a complex quan-
tity that therefore has a magnitude and phase:

(54.24)

where . The function of frequency �xy(f) is the phase
spectrum. It is useful to define a normalized quantity, the coher-
ence function, as follows:

(54.25)

Examples of coherence and phase functions are shown in
Figure 54.8. In EEG analysis these functions are computed after
the application of cross-correlation functions, which was car-
ried out in a way similar to the autocorrelation function as
described previously (see for details Ref. 35). Coherence func-
tions have been used in several investigations of the EEG signal
generation and their relation to brain functions, including
studies of hippocampal theta rhythms (89,111), on limbic
structures in humans (112), on thalamic and cortical alpha
rhythms (113), on sleep stages in humans (48), on EEG devel-
opment in babies (91,114), and on the spatial and temporal
structures of dynamical features of local EEG signals (115,116).
The latter measured coherence functions between EEG signals
recorded using electrodes with 5- to 10-mm spacing from
epileptic patients, and found that in both the subdural surface
samples and those from temporal lobe depth arrays, coherence
declines with distance between electrodes of the pair, on the
average quite severely in millimeters. This demonstrates that
coherence fluctuations are quite local.

The recommended way to evaluate coherence functions sta-
tistically is to apply Fisher’s z transformation (14) as used by
Lopes da Silva et al. (113) to analyze EEG signals. Thus, the con-
fidence intervals and bias are dependent on the coherence val-
ues (Fig. 54.8).

The use of coherence functions in routine clinical EEG
analysis has been rather limited thus far. In one system dedi-
cated to this type of analysis, coherence functions have been

Cxy(f) � 0Cxy(f) 0 # exp[j£xy(f) ]

j � 1	1

Cohxy(f) �
0Cxy(f) 0 2

Pxx(f)Pxy(f)

applied with good results (117). The important point is to
define clearly which questions one wishes to answer through
coherence functions application. In this context, the most rele-
vant points are as follows.

Is it possible to differentiate spectral components with fre-
quencies lying close to each other? For example, alpha and mu
rhythms may be difficult to differentiate in plots of power spec-
tra but are readily separated using coherence functions com-
puted between symmetric transversal derivations because the
former show large values of transversal coherences, whereas the
latter have insignificant values (118).

Is it possible to detect the existence of bilateral synchronous
frequency components? Such components may make relatively
small contributions to power spectra, whereas they may give rise
to large coherence values. Coherences also may be useful in deter-
mining the topographic relations of different EEG components.

The counterpart of coherence is the phase function
(Fig. 54.8), which provides information on the time relation-
ships between two EEG signals. An explanation of the use of the
term phase is necessary here. Phase is used in the present con-
text as a mathematical notion referring to the proportion of the
period of a sine wave component of a signal as obtained
through Fourier analysis. The existence of a phase difference
between two EEG signals as obtained from the phase function
can have different meanings. First, assume that the two signals
were recorded from bipolar derivations and that some compo-
nents, for example, between 0 and 3 Hz, show an inverted
polarity (phase opposition, in EEG terms); in this case, the
phase function computed from the cross-power spectrum
between the two signals will show, for the 0- to 3-Hz compo-
nents, a phase difference of 180�. In the second case, assuming
that some components of the signal recorded from one deriva-
tion will be transmitted to the other derivation after a certain
delay time �t (in seconds) the phase difference �� (in degrees)
between the two signals will be linear with frequency in the
range �f (in Hz) corresponding to those components; in this
case, the following relationship is valid:

(54.26)

Until now, phase functions have been little used in routine
clinical EEG practice, probably because phase measurements
are generally difficult to interpret in terms of the two models
just presented. This is because scalp EEG derivations are a com-
plex representation of underlying cortical activity, so that the
potentials recorded at a distance are not easily reduced to clear-
cut biophysical processes at the cortical level. Nevertheless,
Gotman’s (119) system of EEG analysis included phase func-
tion computation in order to detect phase opposition between
the slow frequency components of different bipolar derivations.
If the phase difference between the two signals is about 180�
with a significant coherence between the two signals, one can
conclude that a phase reversal exists. In Gotman’s system, the
search for phase reversals is performed only in the presence of
slow activity. Computing phase functions to determine time
delays between EEG signals during epileptic seizures has also
been proposed (120). The interpretation of these results,
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 however, poses a problem. A time delay between two signals can
be concluded with certainty only if there is a linear relationship
between phase and frequency within a certain frequency band;
if the coherence between the two signals is significant over only
a very narrow frequency band (around a peak), it may be
impossible to define a best fit line to the phase function. In such
a case, the result may be impossible to interpret definitively in
terms of time delay. Instead of using the simple phase function,
it may be recommended to use a weighted phase function, as
proposed by Carter (121), in the sort of problems just dis-
cussed. A fundamental problem, however, is that very often the
relations between EEG signals cannot be considered linear, so
that the use of coherence is not justified. Alternative methods
have been developed (122) in order to overcome this limitation.

Another approach to identifying the source of EEG seizure
activity is use of a generalized form of coherence analysis, the
so-called spectral regression–amount of information analysis
introduced and first applied to EEG analysis by Gersch and
Goddard (123). This method has been used not only to analyze
seizures (124,125), but also to investigate the process underly-
ing the generation of hippocampal theta rhythms (126) and
thalamocortical alpha rhythms (127,128), the organization of
infantile EEGs (129), and seizure activity in animals (130). This
analytic method involves computing first the coherence
between two EEG signals and then the partial coherence based
on a third EEG signal. Computing partial coherences implies
eliminating from each of the two EEG signals that part that can
be regarded as being determined by or predictable on the basis
of the third signal, which constitutes a form of regression analy-
sis. If the initial coherence decreases significantly, one can con-
clude that the coherence between the two initially chosen
signals is due to the effect of the third one. As indicated in the
references cited earlier, it is possible to thus determine the pat-
tern of interactions between a series of simultaneously recorded
EEG signals and, eventually, to find the more likely source of a
given EEG phenomenon (e.g., seizure or rhythmic activity).

Bispectra

Equation 54.16 defines the bispectrum. Although the power
spectrum is sufficient to describe the statistical characteristics
of signals generated by a stationary gaussian process, deviation
of amplitude distribution from normality indicates the need to
examine spectra of higher orders. This is particularly true for
the spectrum corresponding to the second-order autocovari-
ance function R(
1, 
1): the bispectrum Bxx(f1, f2) can be
 estimated by smoothing the triple product

, where Fxx(f) represents the com-
plex FT of the signal x(t) and represents the complex
conjugate (see for details Refs. 28 and 29). Moreover, the bico-
herence of signal x(t), which is the normalized bispectrum of
x(t), can be defined. (Do not confuse with coherence, which is
the normalized magnitude of the cross-spectrum between two
signals x(t) and y(t).) Until now, few studies have put bispectral
computation to practical use. Nevertheless, the specific infor-
mation yielded by bispectra about the relationship between
harmonic frequency components in EEG signals can be valu-
able. For example, Dumermuth et al. (49) have shown that

Fxx(f1)Fxx*(f2)Fxx(f1 
 f2)
Fxx*(f)

some rhythmic EEG activities have a significant bispectrum;
examples are the mu rhythm, which presents significant rela-
tions between harmonics of 10 Hz (5, 20, and 30 Hz), and the
psychomotor variant, with relations between 6, 12, 18, and 24
Hz. Lopes da Silva and Storm van Leeuwen (131) found that
alpha rhythms recorded from the cortex also may have a signif-
icant bispectrum with harmonic components at 10 and 20 Hz.
Moreover, alpha rhythms recorded on the human scalp may
also show a significant bispectrum; in a few studied cases (Fig.
54.4), the so-called alpha variant has been characterized by a
significant relation between the dominant frequency at 10 Hz
and the one-half subharmonic at 5 Hz. Under such circum-
stances, bispectrum computation disproves the alternative
hypothesis that the two components at 10 and 5 Hz are inde-
pendent of each other and thus that low-frequency components
would correspond to abnormal occipital activity. Furthermore,
bispectral analysis of some forms of visual evoked potentials
(132) has permitted putting in evidence some essential proper-
ties of the visual system.

Walsh and Haar Transforms

Alternative ways of computing power spectra have been pro-
posed. These include the Walsh and Haar transforms, which
can improve computational speed (90). These alternative meth-
ods, however, have not yet proved to be of practical interest,
particularly because the FFT already provides a satisfactory
solution.

Hjorth Slope Descriptors The section “Basic Statistical
Properties” defined the nth spectral moment of the power
spectrum an (equation 54.17). Hjorth (30) and Berglund and
Hjorth (133) have developed special hardware to compute in
real time the spectral moments a0 (equation 54.18), a2 (equa-
tion 54.19), and a4 (equation 54.20). In this way, the spectral
moments are not invariant in time as described earlier; rather,
spectral moments are allowed to vary as a function of time
(i.e., the statistical properties of the signal can vary in time),
meaning that this form of analysis can be applied to nonsta-
tionary signals.

Based on these quantities, Hjorth derived the following
parameters, also called descriptors:

Activity,
Mobility, (54.27)

Complexity,

Note that a0 = �2 (equation 54.18), that is, the variance of the
signal; a2 is the variance of the signal’s first derivative as shown
in equation 54.19; a4 is the variance of the signal’s second deriv-
ative (equation 54.20). It should be noted that Hjorth’s descrip-
tors give a valid description of an EEG signal only if the signals
have a symmetric probability density function with only one
maximum (134). This may be true for simple EEG generation
models (135,136) but not in general practice. Nevertheless, the
ease of computing Hjorth’s descriptors makes them attractive
in real-time EEG analysis. The required calculations involve the
computation of time derivatives only.

A � a0

M � [(a2>a0) ]1>2

C � [(a4>a2)(a2>a0) ]1>2
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It must be noted, however, that computing the descriptor
complexity implies taking the ratio between the second and
first derivatives, so that the possibility of introducing large
errors is considerable. To avoid this, the signal bandwidth must
be rather limited. In the author’s opinion, Hjorth descriptors
can be useful if the EEG patterns to be analyzed have a simple
character, a probability density distribution with only one max-
imum, and change over time is rather gradual. It is, therefore,
not surprising that Hjorth’s descriptors have demonstrated
value in monitoring time-varying EEG signals, for instance,
during sleep (137). This method has also been used to quantify
multichannel EEG recordings obtained under routing condi-
tions (138).

PARAMETRIC METHODS

It is reasonable to argue that, in general terms, EEG signals may
be analyzed by any suitable method regardless of precise knowl-
edge of their biophysical origins. It may be asked, however,
whether more appropriate methods of EEG analysis might be
developed if more precise models of the biophysical processes
underlying the generation of EEG phenomena (e.g., alpha
rhythms, delta waves, spike and wave complexes, and so on)
were available. In the particular case of alpha rhythm genera-
tion, there exist biophysical models that can help in formulat-
ing a reply to such questions (136,139,140). These alpha
rhythm models have indicated that an EEG with a dominant
rhythmic component in the alpha frequency range can be
described by a filter network with parameters related to physi-
ologically acceptable variables submitted to a noise input. This
filter network can be analyzed in a first approximation as a lin-
ear processor. This processor can be realized in terms of a math-
ematical model. A special case of this model is the mixed
autoregressive model as described by Zetterberg (141) and the
autoregressive model used by Gersch (142), Fenwick et al.
(143), and Bohlin (144). Such methods are called parametric,
because in such cases the EEG signals are described in terms of
a mathematical model characterized by a set of parameters. 

A link may be said to exist between this type of mathemati-
cal model and the biophysical model of alpha rhythm genera-
tion, but this link is neither specific nor essential. The use of
such mathematical models in EEG analysis is yet to be justified
through pragmatic arguments. These models provide a practi-
cally useful method for quantifying EEG signals, not only in
order to compute spectra (142–150), but also to detect EEG
transient nonstationarities such as epileptiform spikes and
sharp waves (146,151) and to subdivide the EEG into quasi-sta-
tionary segments (152,153). Parametric methods allow consid-
erable EEG data reduction. For instance, using an
autoregressive model, it is possible to describe an EEG signal
using a few coefficients; by following the values of these coeffi-
cients, the signal’s time-varying properties can be traced. The
coefficients can be used to classify EEG spectra using, for
instance, cluster analysis; moreover, the model can also be used
to help detect nonstationary events. The basic model can be
described following the scheme of Figure 54.12, as proposed by
Zetterberg (31). In this figure, two cases are shown: the contin-

uous case and the discrete case. According to the continuous
case, the EEG signal x(t) is assumed to result from the operation
of filtering (with a filter having as transfer function H(s)) on a
noise source with a flat spectrum within the frequency range of
interest. In the discrete case, the EEG signal is given as a set of
samples x(k) resulting from a filter operation on an input noise
signal e(k) with zero mean. The filter, corresponding to the
autoregressive moving average (ARMA) model, is described by
a linear difference equation of the following form:

(54.28)

where q � p. The relation between x(k) and e(k) is given by the
sets of coefficients a1, …, ap and bi, …, bq with a0 = 1. In case
bi = 0 for i = 1, …, q, we are left with the so-called autoregre -
ssive (AR) model:

(54.29)

The computation problem, therefore, is to estimate the coef-
ficients. An important step in this estimation is defining the
minimum number of coefficients to be computed.

Fast algorithms exist to enable computation of those coef-
ficients; they are described in detail by Zetterberg (31),
Makhoul (154), and Eykhoff (155) among others, and
employ several criteria for estimating the order of the model.
Using Durbin’s algorithm, it was found in a group of EEG
recordings of epileptic patients that the minimal order of the
model was, in about 70% of the cases, equal to or smaller
than 5 (156). However, when one wishes a faithful reproduc-
tion of the power spectral density, many coefficients may be
needed (31). In most applications it is sufficient to compute
the AR model of the EEG signal, so this section need not
 consider the special problems regarding ARMA model
 computation.

Computation of Power Spectra
The computation of power spectra using an AR or ARMA
model presents no special difficulties. Using a special algorithm
(spectral parameter analysis [SPA]) developed at Zetterberg’s

a0x(k) 
 a1x(k 	 1) 
 p 
 apx(k 	 p) � b0e(k)

x(k) 
 a1x(k 	 1) 
 p 
 apx(k 	 p) � e(k)


 b1e(k 	 1) 
 p 
 bqe(k 	 q)

Figure 54.12 Block scheme. A: The filtering process on a time contin-
uous signal. B: The autoregressive moving average filter model applied
to a time discrete signal. (Adapted from Zetterberg LH. Means and
methods for processing of physiological signals with emphasis on EEG
analysis. In: Lawrence JH, et al. Advances in Biology and Medical
Physics. Vol 16. New York, NY: Academic Press; 1977:41–91.)

1162 Part IX ■ Computer-Assisted EEG Analysis

89424_ch54  27/09/10  2:25 PM  Page 1162

Niedermeyer's Electroencephalography : Basic Principles, Clinical Applications, and Related Fields, edited by Donald L. Schomer, and da Silva, Fernando Lopes, Wolters Kluwer Health, 2010.
         ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unc/detail.action?docID=2032003.
Created from unc on 2023-05-27 00:05:16.

C
op

yr
ig

ht
 ©

 2
01

0.
 W

ol
te

rs
 K

lu
w

er
 H

ea
lth

. A
ll 

rig
ht

s 
re

se
rv

ed
.



(31) laboratory, both an estimation of the model parameters
and the best spectral representation can be obtained. In the case
of the ARMA model (equation 54.28) spectral density of a sig-
nal sampled with sampling interval is given by:

(54.30)

In case of the AR model, the spectral density is as follows:

(54.31)

In both cases described, spectral density is estimated using
the sets of coefficients. In Zetterberg’s original computational
procedure, the SPA, the EEG analysis is based on the ARMA
model (31). In this form of analysis, Zetterberg not only com-
putes the EEG power spectrum, but also decomposes the spec-
trum into a number of components to achieve a degree of data
reduction; he usually distinguishes three spectral components
so that Pxx(f) is written as the sum of three components (see
also Fig. 54.3):

(54.32)

The delta (�) component is described by a first-order model;
both alpha (�) and beta (�) components require second-order
models. The � component is defined by a power parameter G�

and a frequency parameter ��, which denotes the correspon-
ding bandwidth; G� is defined as:

(54.33)

The rhythmic components (� and �) require two frequency
parameters, the center or resonance frequency f� or f�, and two
power parameters, G� or G�, defined as in equation 54.33. An
example of the spectral decomposition of an EEG signal calcu-
lated in this way is shown in Figure 54.13. 

Spectral analysis can be performed much faster with the AR
than with the ARMA model. It is also easy to use this model to
analyze multidimensional processes so that not only auto, but
also cross-power spectra can be computed.

Inverse Autoregressive Filtering
The AR model can also be used in an inverted form, which
leads to the inverse autoregressive filtering operation. Assuming
that an EEG signal results from a stationary process, it is pos-
sible to approximate it as a filtered noise with a normal distri-
bution. Consequently, passing such an EEG signal through the
inverse of its estimated autoregressive filter should result in a
normally distributed noise N with mean zero and variance �2.
The null hypothesis is that an EEG signal follows the assump-
tion of stationarity and can be expressed in terms of the prop-

Pxx(f) � �2 ∞ a
q

i�0
bi(exp( 	 j2�fi¢t))

a
P

i�0
aj(exp( 	 j2�fi¢t))

∞
2

Pxx(f) �
�2

` a
P

i�0
aiexp( 	 j2�fi¢t) `2

Pxx(f) � P�(f) 
 P�(f) 
 P�(f)

G� � �
q

	q

P�(f)df

erties of the estimated noise, ě(k), resulting from the inverse
autoregressive filtering:

(54.34)

The EEG signal is said to be nonstationary for t = nT if the
null hypothesis can be rejected (i.e., if ě(k) deviates at a certain
probability level from a noise with a normal distribution).
Thus, nonstationarities in an EEG signal can be detected; this is
particularly interesting in the detection of EEG transients of
epileptic patients, as shown by Lopes da Silva et al.
(146,157,158). A simple test on each sample of the estimated
noise can give an indication of the stationarity of the signal at
that moment. However, instead of testing ě(k), a detection
function d(k) is used in order to obtain a certain degree of
smoothing; d(k) is defined as follows:

(54.35)

Because the square of a normally distributed variable (with
unity variance) follows a chi-squared distribution, the detec-
tion function should also have a chi-squared distribution with
a number of degrees of freedom (2m 
 1). The null hypothesis
can then be tested at a certain level, for example, at p � 103. An
application of this process of inverse filtering for the detection
of transient nonstationarities (epileptiform events) in EEG is
illustrated in Figure 54.14.

Time-Varying Signals: Kalman Filtering
Parametric models can be extended in order to analyze time-
varying signals. A method of analyzing this type of EEG signal

ê(k) � xk 
 a
p

i�1
aix(k 	 i)

d(k) � a
k
m

n�k	m
c ê(n)

�̂
d 2

Figure 54.13 Power spectrum of an EEG signal analyzed with a fifth-
order model. It consists of a low-frequency component (�) and two res-
onance peaks (� and �); the components are described by the
parameters G (power), � (bandwidth), and f (peak frequency). Dashed
lines denote the individual spectral components; the solid line indicates
the total spectrum. (Adapted from Isaksson A, Wennberg A. Visual eval-
uation and computer analysis of the EEG—a comparison.
Electroencephalogr Clin Neurophysiol. 1975;38:79–86.)
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consists of applying the so-called Kalman estimation method of
tracking the parameters describing the signals (159–161). The
input signal to a hypothetical processor responsible for gener-
ating the EEG signal is assumed to be a normally distributed
noise e(k). A model is assumed in order to represent the
observed signal; the process dynamics are represented by an
autoregressive model.

The main objective of this procedure is achieved by means of
a recursive algorithm called the Kalman filter to obtain esti-
mates of the model coefficients using earlier estimated data.
This involves updating based on new samples of the time series
(31). The Kalman filtering procedure is not simple to imple-
ment; for an appropriate procedure, it is necessary to choose,
properly, the order of the model and the initial conditions. An
application of this method in the subdivision of EEG signals
(segmentation procedure) is described below. Without entering
into the details of different procedures of Kalman filtering, it is
of interest to note that a measure of EEG signal stationarity can
be derived from the application of this method.

Isaksson (162) has introduced for EEG analysis an algorithm
called SPARK, which stands for spectral parameter analysis,
based on recursive Kalman filtering. He found that an AR
model of order p* = p 
 q gave as good results as an ARMA

model of order p with q = p – 1; a good choice appeared to be
a value of p* = 11 or 13.

Segmentation Analysis
The original purpose of segmentation analysis as introduced by
Praetorius et al. (153) and Bodenstein and Praetorius (152) was
to find in an EEG signal those segments that could be consid-
ered to have unvarying statistical properties.

This means that those segments should be considered as
being quasi-stationary, and the segments could have variable
length. This necessitated the development of criteria for estab-
lishing divisions between segments. These authors based their
analysis on a parametric model of the EEG, an autoregressive
model as defined by equation 54.29. Consult the aforemen-
tioned references for details. Duquesnoy (159) proposed an
EEG segmentation method related to that just described. A
problem in applying this analytic method is the difficulty of
defining clinical–neurophysiologic boundaries between seg-
ments. Therefore, judgment of whether the method produces
segments acceptable on clinical–neurophysiological grounds is
rather subjective and depends strongly on personal criteria.
Nevertheless, this method may be useful in reducing data in
analyses of long EEG records recorded under variable behav-
ioral conditions.

Michael and Houchin (77) proposed a similar method based
simply on computing a running autocorrelation function,
which ensures a quicker procedure. Barlow (163) used the
method devised by Michael and Houchin (77) to compare the
performance of automatic adaptive segmentation with those of
selective analog filtering and inverse digital filtering in auto-
matic evaluation of significant EEG changes associated with
carotid clamping. Of the three methods, the former was clearly
the best.

Adaptive segmentation was used to analyze a series of clini-
cal EEGs showing a variety of normal and abnormal patterns
(164); the computer method was used based on the autocorre-
lation function. By means of this algorithm, EEG segments were
defined; similar segments were then clustered without supervi-
sion. The study concluded that minimal supervision of the clus-
tering process may be necessary. Nevertheless, this adaptive
segmentation method is useful for obtaining significant data
reduction and has practical value for the clinical neurophysiol-
ogist. A review of methods for analyzing nonstationary EEGs
has appeared (165).

MIMETIC ANALYSIS

This form of analysis has been developed mainly by Remond
and collaborators (166–169) and is based on the general con-
cept that automatic EEG analysis should mirror the visual
analysis performed by electroencephalographers in their daily
practice. This is why it has been called mimetic analysis (168).
However, this analytic form uses tools common to other meth-
ods, particularly those nonparametric methods based on signal
features characterized in the time domain, namely
interval–amplitude analysis (68). The peculiar aspect of
Remond’s mimetic analysis is that the whole procedure of

Figure 54.14 Scheme of the principle of automatic spike detection
(ASD) analysis method using simulated signals. Top: The hypothesis is
that the interictal EEG of an epileptic patient results from filtered noise
to which spikes have been added. For simplification in this scheme, the
spikes are not represented as being the output of a filtering process; this,
however, would have been more realistic. Bottom: The analysis consists
of computing an autoregressive filter model representing the hypotheti-
cal process, determining the corresponding inverse filter through which
the EEG signal is passed, and squaring and smoothing the resulting error
signal. The end result or detection signal is tested using the chi-square
statistic; the time samples lying above a certain level are indicated by
thin lines under the curve. Note that in this example the ASD program
detected at the correct time samples the spikes that had been added to
the filtered noise. (Adapted from Lopes da Silva FH, van Hulten K,
Lommen JG, et al. Automatic detection and localization of epileptic foci.
Electroencephalogr Clin Neurophysiol. 1977;43:1–13.)
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extracting EEG features and sets of features follows a syntactic
approach: half-waves and minimal descriptors correspond to
linguistic characters or letters, significant wave series such as K
complexes and spindles to words, segments composed of wave
series such as rhythms to paragraphs, and ensembles of seg-
ments to chapters or sections.

Based on these features it is possible to construct tables or
graphs that demonstrate synoptically the distribution of the
different features in an EEG epoch and determine their statisti-
cal properties for several epochs and derivations. A similar type
of analysis has also been proposed by Schenk (170). These
methods, which have as common background an iterative inter-
val analysis, tend to emphasize the high-frequency components
of the signal, compared directly to spectral analysis (see also
Fig. 54.6) (171). The section “Interval Analysis” stressed the
rather intimate relationship between interval analysis based on
the signal and its derivatives and the spectral moments (see
equation 54.22). Therefore, the methodology used by Remond
and collaborators does not differ essentially from spectral
analysis. The main difference is that mimetic analysis combines
feature extraction with segmentation and logical classification.

MATCHED FILTERING OR 
TEMPLATE MATCHING

Matched filtering is a form of pattern analysis in which a certain
pattern or template (i.e., a set of values in the EEG signal x(t))
is detected by using cross-correlation (equation 54.10) between
x(t) and a priori defined pattern m(t). (For the sake of simplic-
ity the underscore of the stochastic variable is omitted in the
following.) As in equation 54.10, one may write:

(54.36)

The efficiency of the estimator s(t) is defined as follows:

(54.37)

The estimator reaches its maximum value (=1) when m(t) is
identical to x(t) and when both signals are aligned perfectly
along the time axis. In this case, the template m(t) can best be
extracted from the signal x(t). Various algorithms can be used
to complete this operation efficiently. Saltzberg and Burch (36),
Herolf (172), Zetterberg (173), Lopes da Silva et al. (146),
Barlow and Dubinsky (174), and Pfurtscheller and Fischer
(175) have all suggested using matched filtering to help epilep-
tiform events (Fig. 54.15).

TIME–FREQUENCY ANALYSIS

Above we have already mentioned that an important problem
in EEG analysis is the fact that EEG signals, in general, can only
be considered stationary during relatively short epochs. This
has led to the development of several ways of analyzing such

s(t) � �
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0 �
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c �
t
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x2 dt d c �

T

0
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� 1

EEG signals by way of time-varying spectra, namely in the form
of spectral arrays, and by applying segmentation methods. A
more recent development in this respect is the introduction of
methods that can combine analysis both in time and in fre-
quency in an optimal way. Some of these methods use a special
class of basis functions, the so-called wavelets. A function can
be accepted as a wavelet if it satisfies the following relation:

(54.38)

This means that wavelets have typically a waveform of a
damped oscillation. The essential point of this method consists
in decomposing the EEG signal in a set of wavelet functions
defined as follows: 

(54.39)

where s represents the time scale and u is the translation vari-
able. Based on this definition a set of orthogonal wavelets can
be constructed that forms an orthonormal basis. A given func-
tion, such as an EEG signal, may be characterized by the

�
q

	q

�(t)dt � 1

�s,u(t) �
1

2s
�

(t 	 u)

s

Figure 54.15 Continuous correlation coefficient write-out at three dif-
ferent points in time for an EEG signal and a template. In each record
the rectangle indicates the time window for comparisons of template
and EEG. In the first two instances there is no match, but in the third
the template and EEG match exactly (they are identical); hence, the cor-
relation coefficient reaches a peak at 1.0. Sampling rate, 50 Hz; number
of points in template, 72; duration of template, 1.24 seconds. (Adapted
from Barlow JS, Dubinsky J. Some computer approaches to continuous
automatic clinical EEG monitoring. In: Kellaway, P, Petersén I, eds.
Quantitative Analytic Methods in Epilepsy. New York, NY: Raven;
1976:309–327.)
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 corresponding wavelet coefficients. For a basic theoretical treat-
ment of this issue, the reader is referred to Mallat (176). Wavelet
analysis was applied to ongoing EEG signals (177,178) and to
evoked potentials (179,180) with interesting results. The set of
wavelets is limited. To represent nonstationary EEG signals, a
wider repertoire of basis functions is desirable. With this aim in
view, the method called matching pursuit was developed by
Mallat and Zhang (181) and applied to the detection of tran-
sients in EEG signals by Durka and Blinowska (182). A large set
of basis functions can be obtained by scaling, translating, and
modulating a window function g(t):

(54.40)

where in the time domain the function is concentrated around u
with a width proportional to s, and in the frequency domain its
energy is concentrated around � with a spread proportional to 1/s.

The minimal time–frequency variance corresponds to the
condition that g(t) is gaussian. By means of the matching pursuit
algorithm, using a dictionary of such basic functions, a conven-
ient expansion of a given signal can be obtained, as explained in
detail by Mallat and Zhang (181) and by Durka and Blinowska
(182). In practice, since EEG signals are available as real discrete
time series, the basis function has the following form:

(54.41)

where the index � = (j, k, p) is the discrete analog of (�, s, u) of
equation 54.40, N = 2L represents the number of samples, and
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 � b

the parameters p and k are sampled at intervals 2j. The proce-
dure is iterative and it is stopped as the set of waveforms is able
to explain a given amount of the signal’s variance.

The corresponding results can be visualized by means of the
so-called Wigner maps, an example of which is given in
Figure 54.16 (183) for the analysis of an epoch of sleep EEG where
the detection of different types of sleep spindles is put in evidence.

An alternative way to compute the time evolution of the fre-
quency spectrum is to apply a windowed Fourier transform
that gives information about gradual changes in frequency
spectra in the course of time. It was shown that this method can
be useful in the analysis of ictal activity (184).

EEG signals recorded from several derivations represent large
data sets that may give related, or even redundant, information.
Multivariate statistical methods can be useful in reducing such
large data sets and in determining a small number of statistically
independent components. Classically this has been accomplished
by factor analysis or principal component analysis. Pioneering
studies of Walter et al. (185) showed that alpha rhythms recorded
from the posterior cerebral regions could be accounted for by
two independent orthogonal components. It should be noted,
however, that while these methods are useful in data reduction,
they do not give information on the nature and location of phys-
iologic generators of EEG signals (186). An alternative approach
consists in applying independent component analysis (ICA), ini-
tially proposed by Bell and Sejnowski (187) and Makeig et al.
(188–190). ICA is a method that can be used to separate a
 number of statistically independent signals, or sources, from an
equal number of linear mixtures of these sources. The basic
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Figure 54.16 Wigner plot of the analysis of an EEG epoch of 20 seconds recorded during light sleep using a match-
ing pursuit algorithm. Here the main objective was to detect sleep spindles automatically and to compare the results
with those obtained by visual inspection by experts. The spindles automatically detected are indicated by the letters
A to F. Spindles indicated by A and B were also detected by the experts. C, D, and E were classified by the experts as
single spindles, but F was outside the section marked by the experts. (Adapted from Durka PJ. Time Frequency
Analyses of EEG [PhD thesis]. Department of Physics, University of Warsaw; 1996.)
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assumption is that EEG/MEG signals recorded at a given site at
the level of the scalp result from the sum of the projected activi-
ties of a number of multiple brain sources, sometimes contami-
nated by extracerebral (artifacts) sources. ICA method aims at
separating these sources in an optimal way. Mathematically the
process of computing ICA consists of a simple transformation of
one matrix (containing the sources) to another matrix (contain-
ing the mixtures or recorded signals) by multiplication with a
mixing matrix. The inverse of the latter can be used to decom-
pose the set of mixtures into the original sources. The problem is
that one does not know, a priori, how the sources are combined,
that is, the coefficients of the mixing matrix are not known. To
estimate these coefficients by way of the ICA method, the set of
independent components is estimated by finding the minima of
their mutual information. In case this process is done successfully
the independent components represent the original sources. It
should be realized that the sources should be non-gaussian and
that the number of sources should not exceed the number of
mixtures. Anemüller et al. (191) presented a generalized method
that considers the EEG sources as eliciting spatiotemporal activ-
ity patterns, corresponding, for example, to trajectories of active
processes, propagating across the cortex. This led them to pro-
pose a model of convolutive signal superposition, in contrast to
the commonly used instantaneous mixing model. In this way the
sources of spatiotemporal dynamics of EEG signals recorded
during a visual attention task could be identified. Further ICA
has been applied to short-time Fourier transforms of EEG/MEG
signals, in order to improve the identification of sources of rhyth-
mic activity (192).

There are many kinds of algorithms to compute ICA. Klemm
et al. (193) reported a comparative study of the performance of
22 algorithms, with the objective of applying them in EEG
analysis. The results of this comparative study may help to select
a task-specific algorithm to analyze a variety of EEG patterns.

A concern about the interpretation of the results of ICA is
the question of how reliable the estimated components are. To
answer this question Groppe et al. (194) presented a new algo-
rithm for assessing the reliability of ICAs based on applying
ICA separately to split-halves of a data set. These authors
showed further that ICA reliability is enhanced by removing the
mean EEG at each channel for each epoch of data rather than
the mean EEG in a prestimulus baseline period.

With the advent of combined fMRI and EEG recording, it
has been proposed to apply ICA to decompose EEG and fMRI
signals in order to facilitate the integration of the two modali-
ties. This opens interesting possibilities to obtain multimodal
integrated images (195). An interesting field of application is in
the field of epilepsy. In this respect Marques et al. (196) decom-
posed EEG signals using ICA and identified the relevant com-
ponents’ time courses to find the regions exhibiting fMRI signal
changes related to interictal activity.

A problem that one is faced while interpreting correlations
between EEG signals recorded from the scalp is the well-known
smearing effect of the volume conductor currents. One method
that may help to circumvent this difficulty is to use ICA as a pre-
liminary step in the analysis. With this objective in view a novel
methodology based on multivariate autoregressive (MVAR) mod-

eling and ICA was proposed by Gómez-Herrero et al. (197), to
estimate the sources of alpha rhythms and their propagation in
the brain. The application of this methodology to 20 subjects
under resting conditions suggested that the major alpha generator
process consists of a strong bidirectional feedback between thala-
mus and cuneus, while the precuneus appeared to participate also
in the generation of the alpha rhythm, which is in accordance with
results obtained using other methodologies (see Chapter 5).

SPATIOTEMPORAL DYNAMICAL ANALYSIS
OF EEG: THE QUESTION OF PHASE
 RELATIONSHIPS, SYNCHRONIZATION,
AND CAUSALITY

In the past editions of this book we present a historical
overview of several aspects regarding methodological
approaches applied to the issue of spatial analysis of EEG sig-
nals. These are now presented and discussed more extensively
in Chapter 55. Here we focus on some general considerations
with respect to the analysis of phase relationships between
EEG/MEG signals recorded from different sites and the related
concepts of phase locking and synchronization.

We must emphasize that the determination of phase relation-
ships between EEG/MEG signals is of great interest to get insight
into the dynamics of underlying brain processes. Two main con-
ditions have to be fulfilled in order to estimate relevant phase
relations. One is that spatial sampling is optimal for the phenom-
ena of interest; another one is that the influence of volume cur-
rents is reduced to a minimum, as mentioned above. It should
always be remembered that EEG phenomena with potential fields
that have spatial frequencies higher than the spatial sampling fre-
quency may give rise to important errors of interpretation (198).

Synchronization between EEG/MEG signals may be put in
evidence in different ways. In EEG literature the terms synchro-
nization and desynchronization are commonly used to refer to
changes in power spectra of EEG activities in a given frequency
band, such as desynchronization or synchronization of alpha
rhythms with respect to a given event, and are expressed by the
terms “event-related desynchronization or ERD,” and “event-
related synchronization or ERS” (199). Implicit to this terminol-
ogy is the assumption that when the activities of the neuronal
elements in a population are not phase-locked to each other, the
resulting amplitude—or power—in the EEG decreases (desyn-
chronized state), and the reverse happens when the neuronal
activities are highly phase-locked (synchronized state). These
EEG phenomena are presented in Chapter 45, and thus will not
be discussed further in this section.

Here we will focus on the notion of phase with respect to
pairs, or multiple, EEG/MEG signals: this means phase locking at
a distance, and not only locally within a circumscribed neuronal
population. In particular, considerable attention has been given
to EEG/MEG oscillations within the gamma frequency range
occurring in-phase at a certain time, as possibly constituting a
general mechanism of transient association between neuronal
assemblies underlying sensory perception (200–202). This
would constitute the substrate of the “binding”  mechanism by
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means of which the neuronal representation of different features
of a complex sensory stimulus would be bound together to form
a unified percept, a “gestalt.” This concept was also generalized to
brain systems engaged in memory processing, as the (para)hip-
pocampal system, where synchronized gamma oscillations in the
entorhinal–hippocampal circuits may allow distributed neu-
ronal populations to form functional assemblies necessary for
the formation of memory traces (203).

The estimation of phase relationships is not trivial. Several
algorithms are used in order to estimate phase synchrony. The
method used by the Paris group (204) starts by choosing
EEG/MEG epochs and applying a band-pass filter to select the
frequency band of interest; thereafter, the instantaneous phase of

the filtered signals is computed by means of the Hilbert trans-
form; finally the degree of phase synchrony, called phase-locking
value (PLV) by these authors, is estimated by averaging the phase
differences on the unit circle in the complex plane. In this way the
phase can be displayed separately from the amplitude compo-
nent for a given frequency range (201,205,206). Using this
methodology it was shown, for example, that the scalp
EEG/MEG of subjects performing the perceptive task of recog-
nizing human faces induces a long-distance pattern of phase syn-
chronization that represents active coupling of the underlying
neural populations. This coupling appears to be necessary for the
realization of this cognitive task (207). An example is shown in
Figure 54.17, which illustrates how the perception of a human

Figure 54.17 Average scalp distribution of gamma EEG activity and phase synchrony. Color coding indicates gamma
power (averaged in a 34- to 40-Hz frequency range) over an electrode and during a 180-msec time window, from stimula-
tion onset (0 msec) to motor response (720 msec). Gamma activity is spatially homogeneous and similar between condi-
tions over time. In contrast, phase synchrony is markedly regional and differs between conditions. Synchrony between
electrode pairs is indicated by lines, which are drawn only if the synchrony is beyond the distribution of shuffled data sets
(P � 0.01). Black and green lines correspond to a significant increase or decrease in synchrony, respectively. (Adapted from
Rodriguez E, George N, Lachaux JP, et al. Perception’s shadow: long-distance synchronization of human brain activity.
Nature. 1999;397(6718):430–433.) (See color insert)
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face (shown in the upright position) induces a long-distance sta-
ble pattern of phase synchronization that corresponds to the
moment of perception, while this was not the case when the faces
were presented in an inverted position, and thus were difficult to
identify as faces. Later, this study was replicated by Trujillo et al.
(208) who revealed that some other aspects should be taken into
account with respect to the analysis of phase relationships. These
authors put in evidence the dependency of phase relations on the
frequency range at which the phase relationships were estimated,
and on the EEG montage used. They were able to replicate
Rodriguez et al.’s results but only at the frequency range that
exhibited the largest gamma power for the face upright position.
Additionally they found, however, substantial phase synchrony in
other conditions, but at different frequencies. Furthermore, they
showed also that the use of EEG signals recorded using Laplacian
“reference-free” derivations (209–211) yields more robust results
than using another referential montage. The judicious choice of
the EEG montage appears to be essential to obtain reliable EEG
phase relationships. It may be noted here that one may use other
methods of source estimation with the same purpose, such as low
resolution brain electromagnetic tomography (LORETA)

(212,213) or variable resolution electromagnetic tomography
(VARETA) (214).

Another novel approach based also on a measure of phase
synchronization was introduced for the analysis of visual
evoked responses to intermittent light stimulation in photosen-
sitive epileptic patients (215,216). The method consists in esti-
mating the phase dispersion of each frequency component
present in the EEG/MEG. In this way a phase clustering index
can be defined that differs from that used by Lachaux et al.
(205). Applying the phase clustering index it was found that the
patients who develop epileptiform discharges during the light
stimulation present an enhancement of the phase clustering
index in the gamma frequency band in comparison to that at
the driving frequency, appearing before the occurrence of
paroxysmal activity (Fig. 54.18). Thus, the phase clustering
index reflects the degree of excitability of the underlying neural
system and it suggests the existence of nonlinear dynamics.

In general the interpretation of phase relationships between
EEG/MEG signals is not straightforward. Indeed it implies the
specification of a biophysical model. The point is to specify how
the neuronal sources of the signals communicate one with the

Figure 54.18 Spatial distribution of the relative phase clustering index (rPCI) changes per magnetic sensor over the magne-
toencephalography (MEG) helmet. Left plot: Average of the means of rPCI from four trials where intermittent light stimulation
at 20 Hz was followed by a photoparoxysmal response (PPR), compared with two trials where light stimulation was not fol-
lowed by PPR (middle plot), and with the average of four trials in an age- and sex-matched control subject (right plot).
(Adapted from Parra J, Kalitzin SN, Iriarte J, et al. Gamma-band phase clustering and photosensitivity: is there an underlying
mechanism common to photosensitive epilepsy and visual perception? Brain. 2003;126:1164–1172.) ((See color insert))
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other, that is, what kind of transfer function relates both sources.
A general biophysical model may be defined, as an example, as fol-
lows: at a given site in the brain there is a source of neuronal activ-
ity, for instance, a generator of signals in the gamma frequency
range; this activity propagates to another site but suffers some
transformation (amplification or attenuation) in the way; as a first
approximation, we may assume that this transformation is linear,
and that one signal may be considered as input and the other as
output of a linear system; in general for any such system there is a
mathematical relationship between the gain, that is, the relation
between the amplitudes of the input and output signals, and the
phase function. Under certain conditions, the phase function is
uniquely determined from the gain function. The class of systems
with this property is called minimum phase shift systems. This
refers to the smallest possible phase lag that can be obtained for
physically realizable systems with a specified gain function. More
precisely, the gain and phase of the system’s transfer function are
related by a set of equations called the Hilbert transform pair (cf.,
Ref. 217). In the case of EEG signals, one may assume that the
phase spectrum between the two signals is composed of two com-
ponents: one corresponding to the minimum phase component,
as described above, and the other to a phase component due to the
existence of a time delay. The former can be estimated from the
gain function. Then this component can be subtracted from the
measured phase spectrum and, if a time delay exists, the difference
should be a phase component that is linear with frequency. From
the slope of the latter a time delay can be computed. This method
was, for example, applied to the beta/gamma activities recorded
from the prepyriform cortex and the anterior entorhinal cortex of
a cat (218).

We should note, however, that in the analysis of EEG/MEG
signals one encounters quite often nonlinear relations, so that
methods based on linear assumptions, such as coherence and
cross-correlation (70,24), in those cases are not the most appro-
priate. To estimate the degree of association between two signals
and the corresponding time delay in a more general way, the non-
linear correlation coefficient h2 as a function of time shift
between the two signals was first introduced in EEG signal analy-
sis by Pijn and colleagues (219,220) and has also been shown to
give reliable measures for the degree and direction of functional
coupling between neuronal populations in different types of
epilepsy (221–224). This method has some major advantages
over other signal analysis methods like coherency, mutual infor-
mation, and cross-correlation, as it can be applied independently
of whether the type of relationship between the two signals is lin-
ear or nonlinear. The basic assumption is that if the amplitude of
signal y is considered as a function of the amplitude of signal x,
the value of y given a certain value of x can be predicted accord-
ing to a nonlinear regression curve. The variance of y according
to this regression curve is called the explained variance, that is, it
is explained or predicted on the basis of x. By subtracting the
explained variance from the total variance, one obtains the unex-
plained variance. The nonlinear correlation ratio h2 expresses the
reduction of variance of y that can be obtained by predicting the
y values according to the regression curve as follows: h2 =
(explained variance – unexplained variance)/total variance,
which takes values in the range [0, 1].

This nonlinear correlation ratio h2 can be computed for a
number of time delays �t between x and y; the estimated time
delay between the two signals corresponds to the value of �t for
which h2 is maximum. Low values of h2 denote that signals x
and y are independent; high values of h2 mean that signal y may
be explained by a transformation (possibly nonlinear) of signal
x. Bidirectional associations reflect the invertibility of the non-
linear mapping while highly asymmetric, unidirectional associ-
ations indicate noninvertible mapping. This implies that high
asymmetric association values may indicate essentially nonlin-
ear, irreversible dynamics of the underlying system (225).

In addition to the estimation of h2, a derived quantity was
proposed by Guye et al. (226) that gives information about the
causality of the association, and was called the direction index D.
This quantity takes into account both the estimated time delay
between signals x and y (�t) and the asymmetric nature of the
nonlinear correlation coefficient h2 (values of the h2 coefficient
are different if the computation is performed from x to y or from
y to x). Values of parameter D range from –1.0 (x is driven by y)
to 1.0 (y is driven by x). More recently Kalitzin et al. (225) pre-
sented a general definition of the nonlinear association index h2,
demonstrating rigorously that the index measures the best
dynamical range of any nonlinear map between signals. A fur-
ther refinement of the nonlinear association analysis is the so-
called “partialization” of the association measure between two
signals. Indeed in cases where a nonlinear association index h2

between two signals may be caused by a third one, acting as a
common source, the influence of the third one can be removed
and the residual signals’ correlations may be computed to deter-
mine whether the association between them is caused by the
common influence of the third signal, or not.

In addition to these nonlinear association methods, some
others have been proposed and implemented to detect general
types of interactions between EEG/MEG signals based on the
theory of nonlinear dynamical systems, such as the concept of
generalized synchronization that can be applied to any kind of
time series (227), based on the theory of nonlinear dynamical
systems that was introduced by Rulkov et al. (228). According to
this concept synchronization between two dynamical systems X
(the driver) and Y (the response) exists when the state of the
response system Y is a function of the state of the driving sys-
tem, X: Y F(X). Assuming that F is continuous and that two
points on the attractor of X, xi and xj, are close to each other, the
corresponding points on attractor Y, yi and yj, will be also close
to each other. The probability that embedded vectors are closer
to each other than a certain small critical distance is estimated
for each discrete time pair (i, j). This is done for each signal, or
channel k of a set of M channels. Thereafter, the number of
channels Hi,j for which the embedded vectors Xk,i and Xk,j are
closer together than the critical distance can be calculated.
Inspired by these theoretical concepts, Stam and van Dijk (227)
defined a synchronization likelihood Sk,i,j for each EEG/MEG
channel k and each discrete time pair (i, j) as:

(54.42)

If 0Xk,i 	 Xk,j 0 6 ek,i:Sk,i,j � (Hi,j 	 1)>(M 	 1)

If 0Xk,i 	 Xk,j 0 7 ek,i:Sk,i � 0
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By averaging over all j, the synchronization likelihood Sk,i

can be estimated. Thus, Sk,i is a measure that describes how
strongly signal k at time i is synchronized to all other M – 1 sig-
nals. The synchronization likelihood is a measure of the
dynamical interdependencies of EEG/MEG signals, both linear
and nonlinear, as a function of time, and may be used to quan-
tify phase relations of nonstationary time series. A number of
applications have been published, as, for example, in a study of
EEG changes related to the performance of a visuosemantic
task (229), and also in clinical study of EEG synchronization in
mild cognitive impairment and Alzheimer disease (230).

We may conclude that when brain activities are coupled in
time, and when one uses the term “synchrony” in the context
of brain signals, one should take into account that synchro-
nous activities do not necessarily occur with time delay equal
to zero, but with a consistent time delay compatible with the
mechanism of propagation of neural activity. To account for
the case where neuronal activities recorded from different cor-
tical areas appear to occur synchronously with zero delay, as in
the case of the experiments of Roelfsema et al. (231), where
zero time-lag synchrony was found between cortical areas in a
visuomotor task in cats, two mechanisms can be proposed:
one is that both activities depend on a third source that
reaches at the same time both cortical areas where the record-
ings were made; another is that the two cortical areas have
strong bidirectionally re-entrant properties. This was, for
example, experimentally demonstrated in the case of epilepti-
form afterdischarges elicited from a focus in the hippocampus
spread to homologous sites in the contralateral hippocampus
following commissural systems that may be strong enough to
ensure the forming of one bilateral oscillating system with
zero interhemispheric delay (232).

Above we have discussed a number of issues with respect to
the question of EEG phase synchronization. This question,
however, may be considered in the more general context of
causal relationships between EEG signals, that is, the question
of causality. We have already indicated that the nonlinear asso-
ciation index h2 allows to infer causal relations between two
signals and to estimate the corresponding time delays. This
property is an example of how to infer causal relations between
two time series in a statistical sense. Already in 1956 Wiener
proposed that given two time series, one can be considered
causal with respect to the other if the second one can be better
predicted by adding knowledge about the first one. Later
Granger (233) applied this concept to linear regression models
particularly in studies of econometrics. These concepts were
adapted to the spectral domain by Geweke (234) using MVAR
models. Besides many applications of these statistical concepts
of causality in different scientific fields, analytic methods based
on these concepts have entered the field of neurosciences in the
course of the 1980s. A comprehensive review of these early
neuroscientific applications can be found in Kami ń ski et al.
(235). Among many others, one example of such methods is
the “short-time directed transfer function (SDTF)” that allows
estimating the propagation of brain activity as a function of
frequency and time (236). This was applied, for example, to a
study of the propagation of gamma and beta components

 during motor imagery using EEG signals recorded from
 electrodes overlying cortical sensorimotor areas (237).

An interesting development in this field that was mainly
inspired by the need of analyzing multiple images produced
in fMRI studies, and further to analyze combined fMRI–EEG
recordings. This domain has been called dynamic causal
modeling (DCM) (238). This methodology goes beyond
functional connectivity analysis as revealed by the statistical
methods described above, but it includes explicit biophysical
models of the processes that are responsible for the genera-
tion of the signals and the causal relationships between them.
This is what has been called effective connectivity, in contrast
with functional connectivity. Accordingly, DCM is based on
two kinds of models: of neural population dynamics and of
the transfer between the neural activity and the signals being
recorded, either EEG or fMRI signals (see for details of these
models Chapter 4; 239,240). This approach is most challeng-
ing for the future because it brings together analytic method-
ologies with the necessity of constructing biophysical models
of the phenomena of interest, be these EEG or fMRI signals
or combinations of both.
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activity in the beta and gamma band during movement imagery
in humans. Methods Inf Med. 2005;44(1):106–113.

238. Friston KJ, Tononi G, Reeke GN Jr, et al. Value-dependent selection
in the brain: simulation in a synthetic neural model. Neuroscience.
1994;59(2):229–243.

239. David O, Harrison L, Friston KJ. Modelling event-related responses
in the brain. Neuroimage. 2005;25(3):756–770.

240. Stephan KE, Harrison LM, Kiebel SJ, et al. Dynamic causal mod-
els of neural system dynamics: current state and future extensions.
J Biosci. 2007;32(1):129–144.

Chapter 54 ■ EEG Analysis: Theory and Practice 1177

89424_ch54  27/09/10  2:25 PM  Page 1177

Niedermeyer's Electroencephalography : Basic Principles, Clinical Applications, and Related Fields, edited by Donald L. Schomer, and da Silva, Fernando Lopes, Wolters Kluwer Health, 2010.
         ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unc/detail.action?docID=2032003.
Created from unc on 2023-05-27 00:05:16.

C
op

yr
ig

ht
 ©

 2
01

0.
 W

ol
te

rs
 K

lu
w

er
 H

ea
lth

. A
ll 

rig
ht

s 
re

se
rv

ed
.



89424_ch54  27/09/10  2:25 PM  Page 1178

Niedermeyer's Electroencephalography : Basic Principles, Clinical Applications, and Related Fields, edited by Donald L. Schomer, and da Silva, Fernando Lopes, Wolters Kluwer Health, 2010.
         ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unc/detail.action?docID=2032003.
Created from unc on 2023-05-27 00:05:16.

C
op

yr
ig

ht
 ©

 2
01

0.
 W

ol
te

rs
 K

lu
w

er
 H

ea
lth

. A
ll 

rig
ht

s 
re

se
rv

ed
.



1179

INTRODUCTION

This chapter is concerned with the use of EEG as a functional
imaging method. Great advancements have been made in the
past several years in recording and analyzing of high-resolution
EEG. Powerful EEG systems have been designed that allow fast
and easy recording from hundreds of channels simultaneously,
even in clinical settings. Sophisticated pattern recognition algo-
rithms have been developed to characterize the topography of the
scalp electric fields and to detect changes in the topography over
time and between experimental or clinical conditions. New
methods for estimating the sources underlying the recorded scalp
potential maps have been constructed and applied to numerous
experimental and clinical data. The incorporation of anatomical
information, as obtained from magnetic resonance imaging
(MRI) in the individual subject, has boosted the use of electro-
physiologic neuroimaging and has stimulated clinical interest.

We will here discuss these recent developments and present
the current state of the art in electrophysiologic neuroimag-
ing, thereby extending other recent detailed reviews on this
topic (1–6).

Neuronal activities in the brain generate current flows in the
head volume conductor, reflected as electric potentials over the
head surface, where they give rise to a specific topographical
map. The proper recording and analysis of these maps are pre-
cursors for source localization. A great deal of localization
information can already be derived from these maps, but their
incorrect interpretation can also lead to a misleading conclu-
sion about the putative generators. The second section of this
chapter will deal with the proper recording of the scalp poten-
tial fields and the characterization, description, and statistical
comparison of scalp potential maps. It will also summarize
analysis methods that are based on spatiotemporal characteris-
tics of potential maps, thereby leading to data reduction and a
priori constraints for subsequent source localization.

The propagation of the electric potential in the brain that is
generated by the active neuronal populations is modulated by
the conductivity properties of the different tissues and by the
shape of the head. If these parameters are known, the electric
potentials that a given current source in the brain produces on
the surface electrodes can be calculated. This so-called forward
solution is the basis of every source localization method. The
third section of the chapter will discuss the different head mod-
els and the current knowledge on head conductivities and their
influence on the scalp potential maps. 

EEG source localization has evolved from single dipole search-
ing methods to distributed source estimation procedures without

any a priori assumption on the number of sources. However, solv-
ing the underdetermined inverse problem requires a priori
assumptions based on information other than the number of
sources, preferentially incorporating physiologic or biophysical
knowledge. The correctness of these assumptions determines the
correctness of the source estimation. The fourth section will dis-
cuss the different source reconstruction algorithms that are cur-
rently used and show examples of applications.

The spatial resolution of high-density EEG with sophisti-
cated source localization methods in realistic geometry head
models has become very impressive and the images that are
produced are as tempting as pictures from other functional
imaging methods, particularly because they show direct neu-
ronal signaling rather than indirect metabolic changes. But EEG
has a second important attraction: the high temporal resolu-
tion. This temporal resolution combined with electrophysio-
logic neuroimaging leads to the possibility to elucidate the
temporal dynamics of neuronal signaling in large-scale neu-
ronal networks and directly estimate network connectivity. The
last section will discuss such analysis methods. 

The power of EEG as a functional neuroimaging method is
largely underestimated and many impressive experimental and
clinical studies using these tools have not received the attention
they merit. The reason is manifold. First, functional MRI has
received a unique status of being able to reduce brain activity to
the underlying sources nonambiguously. Second, misinterpre-
tations of EEG and evoked potential waveforms due to a lack of
understanding of the properties of electromagnetic fields, of
the role of the reference electrode, and of the influence of non-
neuronal signals such as myogenic or occulomotor activity
resulted in a number of claims that later proved to be wrong.
Third, the EEG is somehow harmed by history. The term EEG
is still often related to the artistic interpretation of graph ele-
ments by some skilled neurophysiologists. The magnetoen-
cephalogram (MEG) that basically measures the same neuronal
activity with the same limitations does not suffer from this his-
tory and is easily considered as a neuroimaging method by pub-
lic encyclopedias such as Wikipedia. With this chapter we would
like to diminish this incorrect historical view and show that the
EEG has considerably matured and can now be considered as a
powerful, flexible, and affordable imaging technology.

MAPPING OF THE SCALP ELECTRIC FIELD

Electrophysiologic neuroimaging is based on the recording of the
electric potential from a multitude of electrodes distributed over
the surface of the head. From these simultaneous recordings a
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potential map can be constructed for any single moment in time,
depicting the momentary configuration of the potential field (7).
The idea to analyze these topographies instead of waveform mor-
phologies has already been formulated some decades ago (8–10)
and has been called EEG topographical mapping. EEG mapping
is a precursor to source imaging (11), and the proper analysis and
interpretation of EEG maps can give a great deal of information
with regard to the putative sources in the brain. Most impor-
tantly, by physical laws, different map topographies must have
been produced by different source configurations in the brain
(12). Thus, statistical methods that allow determining signifi-
cantly different map topographies over time or between condi-
tions or subjects provide important a priori hypotheses about
whether and when differences in the source localization algo-
rithms can be expected. Analysis of topographic maps is there-
fore an important step in electric source imaging (3). 

Visualization and proper inspection of topographic maps is
also mandatory for source imaging to assure that maps that are
clean of artifact enter the algorithms. The quality of the maps
determines the goodness of the source imaging procedures. It is
therefore of crucial importance that these scalp potential fields
are recorded and preprocessed in a reasonable manner, and that
they are visualized and carefully inspected before applying
source imaging algorithms to them. This particularly concerns
EEG that is recorded in noisy environments such as in the MRI
scanner. EEG waveforms that look correct after filtering and
denoising do not yet necessarily indicate that the EEG maps will
be correct and usable for source analysis.

In the following we discuss some practical issues related to
the recording and construction of topographic maps. This con-
cerns the number and the distribution of the electrodes on the
scalp to provide an adequate spatial sampling of the potential
field. It also concerns the parametric description of the map
configuration and the comparison of map topographies in a
global and reference-independent way. Further details can be
found in Ref. 13.

Spatial Sampling
It is clear that proper sampling of the electromagnetic field over
the whole scalp needs a large number of sensors. The MEG com-
munity has consequently quickly moved from low- to high-reso-
lution systems, and most of the MEG laboratories are nowadays
recording from over ~150 channels. Until recently, this was a
severe limitation for the EEG, because application of a large num-
ber of electrodes was time consuming, uncomfortable, and expen-
sive. However, this is not a limiting factor anymore. EEG systems
of up to 256 electrodes are commercially available and are easy
and fast applicable, even in clinical settings (Fig. 55.1) (14–17).

The question of how many electrodes are needed for proper
EEG mapping and source imaging is not completely answered.
It depends on the spatial frequency of the scalp potential field,
which is limited by the blurring caused by volume conductor
effects, particularly induced by the low conductivity of the skull
(18). The maximal spatial frequency has to be correctly sampled
to avoid aliasing, which appears when the frequency of the
measured signal is higher than the sampling frequency. In the
case of discrete sampling of time-varying signals, a sampling

frequency that is twice as high as the highest frequency in the
signal is required to avoid aliasing (Nyquist rate) (see also
Chapter 54). Similar rules apply to sampling in space, since the
potential distribution is only sampled at discrete measurement
points (electrodes) (19,20). Spatial frequencies of the potential
field that are higher than the spatial sampling frequency (i.e.,
the distance between electrodes) will distort the map topogra-
phy (21–24) and will lead to misinterpretation of maps and
consequently to mislocalization of the sources. 

Already many years ago, researchers tried to estimate the
maximal spatial frequency of the scalp electric field based on
theoretical considerations and modeling. These works sug-
gested that interelectrode distances of ~2 to 3 cm are preferable
(25,26) for proper sampling of the field, which would lead to
around 100 required electrodes. Freeman et al. (27) suggested
from spatial spectral density calculations that even less than 1-
cm spacing of electrodes is needed. Lantz et al. (28) and Michel
et al. (3) performed simulations using dipole forward modeling
(see section "EEG Forward Problem") to calculate the dipole
localization error of different source localization algorithms
when different number of electrodes were used. Both studies
showed that the localization precision does not increase lin-
early, but reaches a plateau at about 100 electrodes for fully dis-
tributed inverse solution algorithms.

Several experimental studies used subsampling techniques to
establish the number of electrodes needed to correctly recon-
struct potential maps and localize the sources. Michel et al. (3)
demonstrated incorrect lateralization of the source estimated for
the P100 component of the visual-evoked potential when down-
sampling from 46 to 19 electrodes, and that an incomplete cover-
age of the scalp surface can lead to complete misplacement of the
sources (Fig. 55.2). Luu et al. (29) and Lantz et al. (28) used the
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Figure 55.1 High-resolution EEG. Example of an EEG system that
allows fast application of 256 electrodes. The electrodes are intercon-
nected by thin rubber bands and each contains a small sponge that
touches the subject’s head directly (14). The nets are soaked in saline
water before put on the subject’s head. The whole net is applied at once
and needs no skin abrasion and no electrode paste. (HydroCel Geodesic
Sensor Net constructed by Electrical Geodesics Inc., Eugene, OR, USA.)
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downsample method in clinical data to evaluate the correctness
of localization of pathologic activity. Luu et al. (29) studied
patients with acute focal ischemic stroke recorded with 128 elec-
trodes and downsampled to 64, 32, and 19 channels. Visual com-
parison of the EEG maps with radiographic images led to the
conclusion that more than 64 electrodes were desirable to avoid
mislocalizations of the affected region. More objectively was the
downsample study of Lantz et al. (28) on 123-electrode record-
ings from patients with partial epilepsy. Fourteen patients with
different focus localization were recorded before successful resec-
tive surgery; thus, the location of the epileptic focus was known.
Several interictal spikes were manually identified and then down-
sampled to 63 and 31 electrodes. Source localization was applied
to each single spike and the distance of the source maximum to
the resected area was determined and statistically compared
between the different electrode sets. Significant smaller localiza-
tion error was found when using 63 instead of only 31 electrodes.
Accuracy still systematically increased from 63 to 123 electrodes,
but less significantly (Fig. 55.3).

The above-described studies estimate that around 64 or more
electrodes are desirable for accurate spatial sampling and recon-
struction of the scalp potential field. However, as shown by
Ryynänen et al. (23,24) in computer simulation studies, these
estimations are only valid if we assume a conductivity ratio of
approximately 1:80 between skull and brain, as proposed by Rush

and Driscoll (30). These traditional values were used in the
above-described simulation and downsampling studies, but they
are most probably incorrect as indicated by several recent studies
(31–33). If the conductivity of the skull is lower as it is proposed
by these studies, the spatial blurring is smaller and the spatial fre-
quency is higher. Ryynänen et al. (23,24) investigated the relation
between the number of electrodes and the resistance values of the
different compartments. Their computer simulation results sug-
gest that if the 1:80 ratio is considered as correct, 64 to 128 elec-
trodes are indeed sufficient. However, when more realistic skull
conductivity values are used, a higher number of electrodes may
be needed. More realistic values for the conductivity ratio are
suggested to be between ~20 and 50 (34), depending on the skull
thickness. In an experimental study of pediatric patients under-
going intracranial recordings, He and colleagues (35) measured
the scalp and subdural potentials simultaneously during cortical
current injection, and used them to estimate the brain-to-skull
conductivity ratio. The experimental data suggested that the
averaged brain-to-skull conductivity ratio is about 25 when using
the three-sphere head model (33), and about 20 when using the
realistic geometry finite element head model (35). In newborns
the skull thickness is approximately seven to eight times lower
than in adults, leading to a ratio of approximately 14:1 (20,36).
Ryynänen et al. (24) suggested from their computer simulation
studies that with this ratio, spatial resolution still increases with
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Figure 55.2 Spatial sampling. The figure illustrates the importance of proper sampling of the scalp potential field. Visual-
evoked potentials were recorded from 46 electrodes positioned according to the scheme on the left. A distributed source
localization algorithm (LORETA) was applied to the data at the peak of the P100 component, resulting in a medial occip-
ital source maximum. Data were then downsampled to fewer electrodes that were restricted to the posterior part of the
head. The same localization procedure (with the same spherical head model) at the same time point led to incorrect local-
ization, with even a frontal maximum with 19 occipital electrodes. Using again only 19 electrodes, but distributing them
equally over the head as illustrated on the scheme on the right, leads to a complete sampling of the electric field and to a
more correct localization. (From Michel CM, Lantz G, Spinelli L, et al. 128-Channel EEG source imaging in epilepsy: clin-
ical yield and localization precision. J Clin Neurophysiol. 2004;21:71–83.)(See color insert)
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256 as compared to 128 electrodes in realistic noise levels. Grieve
et al. (20) also suggested that a 256-electrode array is needed in
infants to obtain a spatial sampling error of less than 10%.
However, larger electrode arrays are also more influenced by
measurement noise, which affects the spatial resolution. As sug-
gested by Ryynänen et al. (23,24), the measurement noise is a
critical limiting factor for the spatial resolution of high-density
EEG systems. Thus, there is an important interplay between
number of electrodes, measurement noise, and conductivity val-
ues of the different compartments of the head. Furthermore, it
remains for the moment unclear how much an imperfect spatial
sampling influences the source imaging. Some data did suggest
that even with ~32 electrodes, one gains important insight about
the underlying brain electric sources by performing source local-
ization and imaging (37–40). Further studies with direct meas-
urements of the conductivities at different locations on the head
through current injection (41) or with the aid of MRI (42) will
be needed to definitely answer the question of the head tissue
conductivity. Further experimental and clinical studies shall also
be needed to systematically investigate the question of optimal

number of electrodes that are needed to recover spatial features
of scalp topography and to estimate the underlying brain sources
that generate the scalp EEG. 

Map Inspection, Artifact Correction, Interpolation
A mandatory requirement in EEG and ERP analysis is the detec-
tion and elimination of artifacts, caused by bad electrode con-
tact, muscle or eye movement activity, or other environmental
noise. Besides automatic detection of such artifacts using ampli-
tude windows, careful visual inspection of the EEG traces is
mandatory. These requirements evidently also hold for EEG
mapping and source localization, but in addition to the need for
clean EEG traces, the spatial EEG analysis also requires clean
maps (13). Even if the EEG traces appear correct, they might be
contaminated by noise that destroys the spatial configuration of
the maps. Spatial inhomogeneities due to bad electrodes can
drastically influence source localization outcome because they
can lead to strong local gradients. Figure 55.4 illustrates this
problem. In one case, the bad electrode is readily seen in the 256-
channel EEG traces, and it is also easily seen in the  topographic
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Figure 55.3 Influence of number of electrodes on source localization. Evaluation of source localization precision of inter-
ictal discharges in 14 epileptic patients, recorded with 123 electrodes. Single spikes were localized with a linear inverse
solution in the individual brain and the distance of the source maximum to the resected area was measured. Mean and
standard deviation of the distance were compared between the original high-resolution recording and with downsampling
of the same data to fewer channels (but still equally distributed). The top row shows the example of one patient. The dia-
monds indicate the source maximum; the blue area marks the resected zone. Diamonds outside the brain are actually on
another level and projected onto the illustrated slide. The bar graph shows the mean distance to the lesion. Stars indicate
significant differences between the different number of electrodes. A clear significant amelioration of the localization pre-
cision was observed when increasing the number of recording channels. (From Michel CM, Brandeis D. Data acquisition
and pre-processing standards for electrical neuroimaging. In: Michel CM, Koenig T, Brandeis D, et al., eds. Electrical
Neuroimaging. Cambridge: Cambridge University Press; 2009. Modified after Lantz G, Spinelli L, Seeck M, et al.
Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128 channel EEG mapping study.
J Clin Neurophysiol. 2003;20:311–319.)(See color insert)
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map by a strong and isolated local potential minimum. The sec-
ond bad channel is not easily seen in the traces and is not
detected by an amplitude window. However, it is readily visible
on the map by a negative “island” within the otherwise positive
potential. Keeping these bad channels in the construction of the
potential field leads to an incorrect estimation of a focal source
under this electrode, which completely disappears when these
electrodes are taken out. 

This example illustrates the importance of inspecting not
only the EEG traces for abnormal graph elements, but also the
potential maps for abnormal topographies. It is thereby impor-
tant that the recording reference is included in the electrode
array for map construction, because also the reference electrode
is an active electrode and has to be inspected for abnormal val-
ues. The most convincing example has been demonstrated by
Yuval-Greenberg et al. (43), showing a map with a very steep
potential maximum at the nose reference. This was due to the
recording of miniature saccades by this “noncephalic” reference
electrode. This becomes readily visible when looking at the map,

but is ignored and misinterpreted as occipital gamma activity
when looking at single occipital electrodes that were recorded
against this nose reference (43). 

When data are averaged over sweeps or over subjects, bad
electrodes must be interpolated before averaging. Most of the
commonly used interpolation routines belong to the family of
spline interpolations. Spline interpolations can be linear (based
on a polynomial of first degree), or quadratic, cubic, or of higher
order. Using cross-validation tests, it was concluded that higher
order spherical spline interpolations perform reasonably well in
sufficiently dense electrode arrays (44,45). The estimation of
potentials is less reliable when the potentials are located outside
of the electrode array and not between some electrodes.
Extrapolating potentials beyond the electrode array should thus
be avoided. 

Efficient algorithms to detect and eliminate artifacts based
on “abnormal” spatial configurations are increasingly used in
EEG mapping and source localization studies. Most efficient are
algorithms based on independent component analysis (ICA)
(46). The ICA is particularly useful for eye movement artifact
detection and elimination, because the artifact is largely inde-
pendent from the remaining part of the data. 

Topographic Analysis
The traditional analysis of EEG and evoked potentials relies on
waveforms. Parameters of interest are thereby changes in ampli-
tude or frequency, or peaks at certain latency time-locked to
stimulus presentation. These measures are ambiguous because
the EEG is by definition a bipolar signal. Changes of the loca-
tion of one of the two electrodes will change the values of the
above parameters. This ambiguity is well known and has led to
a large discussion on the reference-dependency of the EEG and
the question of the correct recording reference for a certain
experimental or clinical condition (47–51). 

This reference problem of the EEG is completely resolved
when topographic analysis methods are applied. The potential
map topography does not depend on the reference (3,50,52–54).
The reference only changes the zero level, but the topographical
features of the map remain unaffected (53). Thus, the reference
only introduces a DC shift. This shift is eliminated when apply-
ing topographic analysis methods including source imaging.
Elimination of the DC level can be achieved by calculating the so-
called common average reference at each moment in time (9).

One way to sharpen the spatial details of the scalp potential
maps is to calculate the scalp current source density, or the sur-
face Laplacian of the potential (21,55,56). The surface Laplacian
of the scalp potential is the second spatial derivative of the poten-
tial field in the local curvature in �V/cm2. The surface Laplacian
has been mainly derived from unipolar potential recordings on
the scalp, using algorithms such as finite difference algorithm
(57), spherical spline algorithm (58), or realistic geometry spline
algorithm (59). The surface Laplacian has been widely used in
applications when one wishes to enhance the sensitivity to local
activity. It can be interpreted as an estimation of the current den-
sity entering or exiting the scalp. It emphasizes superficial sources
because deeper sources produce smaller potentials on the surface.
Like the other topographic measures that will be described below,
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Figure 55.4 Influence of artifacts on source localization. Example of a
256-channel EEG recording and the reconstruction of the scalp potential
map and the source estimation for this map using a distributed linear
inverse solution (LAURA). The first time point (left) includes a clear arti-
fact on a left temporal electrode, easily identifiable on the EEG traces and
on the EEG map. This leads to a dominant source under this electrode
position in the inverse solution. Excluding (or interpolating) this elec-
trode leads to a dominant source on the contralateral temporal lobe. The
artifact channel at the second time point (right) is not easily identifiable
on the traces (artifact trace shown in red). However, the map clearly iden-
tifies this bad right frontal electrode with a negative potential surrounded
by otherwise positive electrodes. Elimination of this bad electrode leads
to a unique occipital source. Keeping the electrode for the inverse solu-
tion calculation leads to an additional right frontal source underlying this
electrode. (Modified from Michel CM, Brandeis D. Data acquisition and
pre-processing standards for electrical neuroimaging. In: Michel CM,
Koenig T, Brandeis D, et al., eds. Electrical Neuroimaging. Cambridge:
Cambridge University Press; 2009.)(See color insert)
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the surface Laplacian estimates are independent of the position
of the recording reference, because the potential common to all
electrodes is automatically removed (60).

Scalp potential maps can be characterized by their strength
and their topography. A reference-independent measure of
map strength is the global field power (GFP) (8). GFP is the
standard deviation of the potentials at all electrodes of an average-
 reference map. It is defined as

(55.1)

where ui is the voltage of the map u at the electrode i, is the
average voltage of all electrodes of the map u, and N is the num-
ber of electrodes of the map u. Scalp potential fields with pro-
nounced peaks and troughs and steep gradients, that is, very
“hilly” maps, will result in high GFP, while GFP is low in maps
that have a “flat” appearance with shallow gradients. GFP is a
one-number measure of the map at each moment in time.
Displaying this measure over time allows to identify moments of
high signal-to-noise ratio, corresponding to moments of high
global neuronal synchronization (61).

A reference-independent measure of topographic differ-
ences of scalp potential maps is the so-called global map dis-
similarity measure (GMD) (8). It is defined as

where ui is the voltage of map u at the electrode i, vi is the
voltage of map v at the electrode i, is the average voltage of all
electrodes of map u, is the average voltage of all electrodes of
map v, and N is the total number of electrodes. In order to assure
that only topography differences are taken into account, the two
maps that are compared are first normalized by dividing the
potential values at each electrode of a given map by its GFP.

The GMD is 0 when two maps are equal, and maximally
reaches 2 for the case where the two maps have the same
topography with reversed polarity. It can be shown that the
GMD is equivalent to the spatial Pearson’s product–moment
correlation coefficient between the potentials of the two maps
to compare (62).

If two maps differ in topography independent of their
strength, it directly indicates that the two maps were generated
by a different configuration of sources in the brain (4,11,63).
The inverse is not necessarily true: infinite number of source
configurations may produce the same scalp potential topogra-
phy (12). The GMD calculation is therefore considered as a first
step for defining whether different sources were involved in the
two processes that were compared. When comparing subsequent
maps in time using the GMD, periods where source configura-
tion changes appeared can be defined. It is interesting to note
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that the GMD inversely correlates with the GFP: GMD is high
when GFP is low, that is, maps tend to be stable during high GFP
and change the configuration when GFP is low (Fig. 55.5). The
GMD is itself not a statistical measure. However, if two groups
of maps are compared, a statistical statement of the significance
of the topographic differences can be made. This is achieved by
performing nonparametric randomization tests based on the
GMD values as, for example, described in Ref. 54.

Spatiotemporal Decomposition
Source localization procedures can be applied to multichannel
EEG and ERP data at any instant in time. With the high sam-
pling rate of modern EEG systems that easily exceed 1000 Hz,
this leads to a large amount of data from which the relevant
information has to be extracted. Consequently, experimenters
typically predetermine relevant events within a continuous
time series of data to which source analysis will be applied. This
particularly concerns ERP research, where peaks in certain time
windows at certain electrodes are identified and spatially ana-
lyzed (64). This traditional approach is however less tenable
with high-density EEG and ERP recordings, because different
scalp sites have different peak latencies, and because the wave-
forms (and thus the peaks) at certain electrodes change when
changing the position of the reference electrode. 

An alternative to the traditional preselection of relevant
events based on ERP waveforms is to define components on the
basis of the topography of the potential field (65). Most com-
monly, some kind of spatial factor analysis methods are used for
this purpose. These methods produce a series of factors that
represent a weighted sum of all recorded channels across time.
The aim of this factor analysis approach is to find a limited
number of optimal factors that best represent a given data set.
The load for each of these factors (i.e., the goodness of fit) then
varies in time. Each factor represents a certain potential topog-
raphy, that is, a prototypical map. Source localization applied to
these maps results in a limited number of putative sources in
the brain that explain a full time series of multichannel EEG
data with time-varying strength. 

The most commonly used variant of spatial factor analyses is
the principal component analysis (PCA) (66–69). The first factor
of the PCA solution accounts for the maximally possible amount
of data variance, and each next orthogonal factor accounts for the
maximum possible residual variance. Since factors that con-
tribute little to the explained variance can be neglected, the PCA
is a powerful exploratory tool to reduce complex multichannel
EEG data in space and time. It has been repeatedly applied to
ERP studies with the aim to extract ERP components whose vari-
ance is related to a given experimental condition. It can provide
useful information on how a given experimental manipulation
affects ERP components without any a priori assumption about
the shape or number of components in the data set (69–73).

The PCA does not allow for cross-correlations between activ-
ities corresponding to separate factors and thus excludes linear
dependencies between the factor maps. However, it does not
exclude dependencies based on higher order correlations. The
factor analysis method that also removes these higher order rela-
tions is called independent component analysis (ICA) (74). The

1184 Part IX ■ Computer-Assisted EEG Analysis

89424_ch55  22/09/10  3:27 PM  Page 1184

Niedermeyer's Electroencephalography : Basic Principles, Clinical Applications, and Related Fields, edited by Donald L. Schomer, and da Silva, Fernando Lopes, Wolters Kluwer Health, 2010.
         ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unc/detail.action?docID=2032003.
Created from unc on 2023-05-27 00:05:16.

C
op

yr
ig

ht
 ©

 2
01

0.
 W

ol
te

rs
 K

lu
w

er
 H

ea
lth

. A
ll 

rig
ht

s 
re

se
rv

ed
.



objective of the ICA is sometimes illustrated by the so-called
“cocktail party problem,” where the ICA allows decomposing a
sound record from a party into the independent contributions
of the individual persons. Like the PCA, the ICA produces a
weight coefficient for each factor. Each factor is supposed to
represent a temporally independent component. 

As described earlier, the ICA can be very useful for detecting
and removing artifacts such as eye blinks (46), or artifacts pro-
duced by brain-independent sources such as the ballistocardio-
gram artifact of the EEG recorded in an MRI scanner (75–77),
although negative results have been reported as well (78–80).
More critical is the idea of decomposing the brain processes into
a number of statistically independent factors (74,81) because it
implies that there are indeed a similar number of independent
processes in the brain.

An alternative to the above-described component analysis
approaches is the so-called microstate segmentation method
(82). It is based on the highly reproducible observation that the
topography of the EEG or ERP potential maps remains stable for
several tens of milliseconds and then abruptly switches to a new
configuration in which it remains stable again. This can easily be

seen in the ERP examples in Figure 55.5 by the stable low global
dissimilarity (GMD) over extended time periods separated by
sharp dissimilarity peaks indicating periods of topographic
change. The same observation holds for spontaneous EEG, if
polarity inversion caused by the intrinsic oscillatory activity of
the generator processes is ignored (Fig. 55.6) (83–86). This fun-
damental observation led to the proposal to apply cluster analy-
sis to the data set to identify a set of topographies that explain a
maximum amount of the variance of the data (87). The differ-
ence to the above-described factor analysis approach is that the
microstate model allows only one single topography to occur at
one moment in time. Evidently, each topography can represent
multiple simultaneously active sources, but they are active
together for a certain time period, forming a large-scale neuronal
network configuration that is expressed as unique stable map
topography. During the period of stable topography, the strength
of the field varies, indicating different level of synchronization of
the simultaneously active areas. In contrast to the ICA-based
models of independent brain processes that overlap in time, the
microstate model proposes one global brain state per time
period, consisting of an interdependent and synchronized
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Figure 55.5 Spatial analysis of evoked potentials. Example of 256-channel visual-evoked potential (VEP) and somatosen-
sory-evoked potential (SEP). VEP from full-field checkerboard reversal presented to the right eye only (left eye covered). SEP
from electric stimulation of the right median nerve. Data represent the grand mean of over 20 subjects. Top row: Overlaid
traces of all 256 channels against the average reference. Second row: Global field power curve (GFP) as a measure of field
strength indicates five dominant peaks in both evoked potentials. Third row: Global map dissimilarity curve (GMD) meas-
uring topography differences between successive time points. It shows low values during extended periods and sharp peaks
at moments of low GFP. Fourth row: Potential maps (seen from top, nose up, left ear left) that were derived from a k-means
cluster analysis of the whole data sets. In both EPs, five maps best explained the data. Each one dominated a given period
as determined by spatial correlation analysis. Vertical dashed lines mark these periods. Last row: Distributed linear inverse
solution applied to each of the five maps, revealing activation and propagation of visual and sensor-motor cortex, respec-
tively. Note that the first period represents extracortical activity in both cases (activity in the right retina for the VEP and in
the brainstem for the SEP). Both areas were not included in the solution space, consequently leading to incorrect localiza-
tion in the source estimation. (For more details see Ref. 106.)(See color insert)
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 network (88). This corresponds well to the neuronal workspace
model, which suggests that episodes of coherent activity last a
certain amount of time (around 100 msec) and are separated by
sharp transitions (89,90), as well as to the proposal that neu-
rocognitive networks evolve through a sequence of quasistable
coordination states rather than a continuous flow of neuronal
activity (91–93). Cross-validation methods following cluster
analysis have shown that a very limited number of map topogra-
phies are needed to explain extended periods of spontaneous
EEG, and that these few configurations follow each other accord-
ing to certain rules (85,87). Changes in the succession and dura-
tion of the microstates have been observed in several pathologic
conditions such as depression (94), dementia (95,96), schizo-
phrenia (97,98), and epilepsy (99), as well as after drug intake
(100,101). In normal subjects, the duration and frequency of
appearance of the four most dominant microstate configurations
varies with age (86). Concerning ERPs, the cluster analysis is an
efficient way to determine different ERP components exclusively
on the basis of their topography (73,87,102,103). Statistical speci-
ficity of these component maps for different experimental condi-
tions can then be assessed by spatial fitting procedures using the

global dissimilarity as metric (54,104,105). Such methods can be
used for an objective analysis of clinical evoked potentials, for
example, in multiple sclerosis (106). They have been used in
numerous experimental ERP studies on sensory and cognitive
information processing and have allowed creating a microstate
dictionary for different brain functions (107–115). Source local-
ization applied to these microstate maps has proven to be an effi-
cient way to describe those brain areas that are crucially
implicated in the processing of stimuli and that differ depending
on the task demands (Fig. 55.5) (103).

EEG FORWARD PROBLEM

In this section, we introduce the methods for solving the so-
called EEG forward problem, which deals with (i) how to model
the neuronal excitation within the brain volume and (ii) how to
model the head volume conduction process in order to quanti-
tatively link neuronal electric sources with the electric poten-
tials over the scalp. Solving the EEG forward problem can help
understand the relationship between neuronal sources and the
recorded EEG signals, and is also an integrative part of the EEG
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Figure 55.6 Microstate segmentation of
spontaneous EEG. Four seconds of eyes-
closed EEG measured from 42 electrodes
are shown on top. The two blue curves rep-
resent the global field power (GFP) and the
global map dissimilarity, respectively. A
series of potential maps illustrate the data
that has been submitted to a k-means clus-
ter analysis with ignoring strength and
polarity. Four maps best explained the
whole 4 seconds of data. The four maps are
illustrated on the bottom. On the GFP curve
below the map series, the time periods dur-
ing which each map was dominant are
marked in different colors. A shorter period
is zoomed in and all maps during this
period are shown. Marking and connecting
the extreme potentials illustrates the stabil-
ity of topography during each period.
(From Michel CM, Brandeis D. Data acqui-
sition and pre-processing standards for
electrical neuroimaging. In: Michel CM,
Koenig T, Brandeis D, et al., eds. Electrical
Neuroimaging. Cambridge, MA: Cambridge
University Press; 2009.)(See color insert)
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inverse problem, which will be discussed in the section “EEG
Inverse Problem.”

Source Models
The primary sources of EEG are considered to be the postsy-
naptic currents flowing through the apical dendritic trees of
cortical pyramidal cells. Such neuronal currents, when viewed
from a location on the scalp surface that is relatively remote to
where the neural excitation takes place (far field), can be mod-
eled as an electric current dipole composed of a pair of current
source and sink with infinitely small interdistance. When the
brain electric activity is confined to a few focal regions, each of
these focal areas of neuronal excitation may be modeled as an
equivalent current dipole (ECD) based on the far field theory
(for a theoretical treatment see the appendix in Chapter 5).
Such equivalent dipole model has been widely used in source
localization analysis of EEG in an attempt to better interpret the
origins of the scalp-recorded EEG (116–120). While the ECD is
a simplified model and higher order equivalent source models
such as the quadrupole have also been studied to represent the
neural electric sources (121,122), the dipole model has been so
far the most commonly used brain electric source model. A
number of experimental and clinical studies have demonstrated
its merits in helping interpreting EEG data and localizing
sources generating the scalp-recorded EEG.

When the neuronal sources are no longer confined to a few
focal regions, the ECD model may not well represent the distrib-
uted brain electric activity. Distributed current source models
can then be used to represent the whole-brain bioelectric activity.
The essence of the distributed current source models is to model
the neuronal activities over a small region by a current dipole
located at each region. The brain activity with any distribution of
neuronal currents can be approximately represented by a source
model consisting of a distribution of current dipoles that are
evenly placed within the entire brain volume. At each location,
three orthogonal dipoles are used in that the weighted combina-
tion of them is capable of representing an averaged current flow
with an arbitrary direction in the region. Such source model is
usually called volume current density (VCD) model, in which
current dipoles distribute over the entire brain volume (123). The
brain anatomical information can also be used to constrain the
current source space to the cortical gray matter due to its domi-
nant presence of large pyramidal cells. Such anatomical con-
straints can be obtained from existing structural neuroimaging
modalities, particularly T1-weighted MRI, which provides high
spatial resolution and a great contrast to differentiate the cortical
gray matter from the white matter and cerebrospinal fluid (CSF).
The current source orientations can be further constrained to be
perpendicular to the cortical surface, because the columnar
organization of neurons within the cortical gray matter con-
strains the regional current flow in either outward or inward nor-
mal direction with respect to the local cortical patch (124), and
the gray matter thickness (about 2 to 4 mm) is much smaller rel-
ative to the “source-to-sensor” distance (60). Under such cortical
constraints, such source model is usually called cortical current
density (CCD) model, in which current dipoles distribute over a
surface in parallel to the epicortical surface. 

All of the above current source models are often referred to
as distributed current density models. Physically, any bioelectric
source activity can be represented by a continuous distribution
of primary current density. Mathematically, the current density
and current dipole share the identical form of equations for
computing the extracellular potential, supporting the use of dis-
tributed current dipoles to approximate the continuous current
density distribution. The dipole distribution may be viewed as
discretized version of the continuous current density distribu-
tion in the space domain. Each of such current dipoles repre-
sents the regional neuronal activity, and the dipole amplitude
indicates the amount of synchronized neuronal activity in the
local region.

In addition to current dipole-based source models, the current
monopole model (125) was also used to equivalently represent
brain electric activity. Mathematically, such current monopole
model can also represent the source activities in a sense that it pro-
duces almost the same electric potentials on the scalp electrodes.
However, the biologic interpretation of such monopole source
model remains unclear. Another alternative source model is based
on the estimation of the three-dimensional (3D) distribution of
the intracranial potentials instead of the three components of a
dipole, as proposed in the ELECTRA source imaging technique
(102,126). It is based on the neurophysiologic consideration that
ohmic currents dominate the EEG measurements (127). While
such 3D potential estimation more closely resembles intracranial
recordings, their biologic interpretation is as difficult as the esti-
mation of current monopoles. 

Volume Conductor Models
When the source model is determined, the EEG forward prob-
lem consists of obtaining the distribution of electric potential �
on the scalp surface, given any known distribution of current
density inside the brain as well as conductivity values through-
out the head volume. Such solution is usually called EEG for-
ward solution for a given head volume conductor model. The
head volume conductor model refers to our assumption on the
shape and conductivity properties of the tissues of the head.
Head volume conductor models include the infinite homoge-
neous model, single-sphere model, three concentric–sphere
model, four concentric–sphere model, realistic geometry
homogenous head model, realistic geometry multicompartment
head model, and realistic geometry inhomogeneous head
model. 

The simplest EEG forward solution is that in the infinite
homogeneous model, where the entire space is assumed to be
occupied by a homogeneous conductive medium (4,127). The
electric potential over the scalp electrodes can then be given as

(55.3)

where the source element behaves like a dipole source,
with a field that varies as 1/r 2, and ∇ represents the divergence
operator (see the appendix in Chapter 5). The impressed cur-
rent density , representing neuronal currents, may be inter-
preted as an equivalent dipole source density, which behaves as

J�

£ �
1
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b # J�i dv
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a fundamental driving force establishing the electric potentials
within the head volume conductor with an electric conductiv-
ity �. 

A more reasonable representation of head is the series of
spherical models, including a single-sphere model (128),
three concentric–sphere model (30,55,129), and four
concentric –sphere model (130,131). In these spherical models,
the shape of the head is approximated by spherical surfaces,
including the scalp, the skull surface, the brain surface, etc. In
such cases, the electric potentials over the scalp surface (the
outer sphere) due to a current dipole can be derived analytically
for the single-sphere model, or by use of special function for the
multisphere models. Since the low-conductivity skull layer
smears significantly the electric potential, the three-sphere
model (brain, skull, and scalp), in which the skull layer is incor-
porated, has been used widely and found to be a good approx-
imation to the head volume conductor when the shape of the
head is ignored. Furthermore, the CSF layer can also be incor-
porated as in the four-sphere model (130), although there is no
converging agreement that the CSF layer must be incorporated
when modeling the head volume conductor.

We should note that the influence of the inhomogeneities of
the tissues of the head as volume conductor affect differently
the EEG and the MEG, since the brain and surrounding tissues
behave as a medium with constant magnetic permeability. The
magnetic field, in contrast to the electric field, is not influenced
by the tissue inhomogeneities, for a given primary current den-
sity distribution (the current density distribution solely
induced by neuronal activation). In particular, for concentric
spherical head models, MEG is not influenced by the concentric
layers. However, when the realistic geometry of head tissue is
taken into consideration, existence of head tissue inhomo-
geneities introduces secondary current sources, which in turn
affect the magnetic field out of the scalp. See also discussion in
the appendix of Chapter 5 and in Chapter 42.

A major disadvantage of the spherical head model is that it
does not make any distinction between areas that generate elec-
tric activity (gray matter) and those that do not (white matter
and ventricles). Constraining the source space to the gray mat-
ter of the individual brain is an important anatomical con-
straint that improves the accuracy of the EEG forward solution.
A simple straightforward way is to map the individual seg-
mented MRI to a sphere and use the analytical multishell spher-
ical model described above, but with the solution space
constrained to the individual gray matter (132). 

More advanced EEG forward solutions have used numerical
techniques to take both the conductivity inhomogeneity and the
geometry of the head into consideration. The most popular EEG
forward solution is based on the boundary element method
(BEM) (118,133,134). He et al. (118) first reported the use of
BEM in solving the EEG forward and inverse problems using a
realistic geometry homogeneous head model. The low-conduc-
tivity skull layer was incorporated later by the studies of
Hämäläinen and Sarvas (133) and Meijs et al. (134). In particu-
lar, the numerical treatment of the low-conductivity skull layer
developed by Hämäläinen and Sarvas (133) made the BEM for-
ward solution widely used for EEG as well as MEG studies. An

example of three-shell BEM head model is illustrated in Figure
55.7A, as derived from structural MRI of a human subject.

In addition to the BEM that provides forward solutions when
the head can be modeled by multicompartment model of homo-
geneous conductivity profiles within each compartment, the finite
element method (FEM) has been further used to handle the inho-
mogeneous conductivity distribution within the head (135–139).
Figure 55.7B shows an example of a FEM head model of a patient
undergoing subdural recordings. The FEM modeling allows
proper handling of inhomogeneity of head tissues including the
surgical alteration such as the very low-conductivity subdural pad
of ECoG electrodes. The FEM forward solutions enable incorpo-
rating the realistic geometries and inhomogeneous conductivities
of the head, even allowing inclusion of the anisotropic conductiv-
ity distribution of the white matter (140). The challenge of using
FEM to solve EEG forward problem is not the FEM algorithm,
which has been fairly well developed, but the need to build a FEM
mesh model of the head from MRI or CT images. Nowadays this
is still a labor-consuming effort to build FEM head models from a
subject’s MRI. Alternative efforts, such as the finite difference
method (FDM), have been reported to solve the EEG forward
problem in which the finite difference grids can be reasonably eas-
ily built from MRI of a subject. However, it is still not a straight-
forward procedure to automatically segment and classify head
tissues into the FDM model. For recent review of image segmen-
tation for the purpose of solving the EEG forward problem, see
Ref. 141. All of these numerical techniques have to utilize the
anatomical information provided by other structural imaging
modalities, particularly T1- and proton density–weighted MRI, in
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Figure 55.7 A: A realistic geometry multishell boundary element head
model as derived from structure MRI of a human subject (207). The scalp,
skull, and brain surfaces are represented by a number of surface triangles.
Brown and blue surfaces refer to the right and left cortical surfaces. Pink
circles refer to the scalp electrodes. B: A realistic geometry inhomoge-
neous finite element head model as derived from structure MRI and CT of
a human subject (139). Green, gray, blue, and brown regions refer to the
scalp, skull, CSF, and brain. Red refers to the subdural pad of ECoG elec-
trode array, which has low electric conductivity. The red layer is not dis-
played continuously in this figure due to the angle of view.(From Liu ZM,
He B. FMRI-EEG integrated cortical source imaging by use of time-variant
spatial constraints. NeuroImage. 2008;39(3):1198–1214 [Panel A], and
Zhang Y, van Drongelen W, Kohrman M, et al. Three-dimensional brain
current source reconstruction from Intra-cranial ECoG recordings.
NeuroImage. 2008;42:683–695 [Panel B]). (See color insert)
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order to segment different brain tissues (i.e., the gray matter and
the white matter) and head structures (i.e., CSF, skull, and scalp).
Sometimes, CT is used together with MRI to obtain structure
information of the skull. Image segmentation remains to be an
important task in realistic geometry inhomogeneous head mod-
eling regardless of the numerical algorithms to be used.

In addition, recent development of diffusion tensor mag-
netic resonance imaging (DT-MRI) (142) provides a means to
estimate the anisotropic conductivity of the cerebral white mat-
ter (137,143,144), which may further improve the accuracy of
the EEG forward solution. The white matter anisotropy is
caused by the bundled axon fibers that restrict the direction of
ionic movements (137). While a computer simulation study
(137) suggested that the white matter conductivity anisotropy
may have effects to EEG forward and inverse solutions, a recent
experimental study suggested otherwise. He and colleagues
(140) conducted a human study to localize the sources in pri-
mary visual cortex using the single dipole solution and com-
pared with the fMRI activation under the same visual stimuli in
the same subjects. Their results indicated that use of the
anisotropic white matter model did not return significantly dif-
ferent solution as that using the isotropic white matter model.
Further investigation is needed to examine the effects of white
matter anisotropy in other brain regions. 

EEG INVERSE PROBLEM

The EEG inverse problem shall be considered as to reconstruct
brain electric sources from scalp-recorded EEG signals. In
experimental and clinical studies, it is desirable to image the
neuronal activity that generates recordable scalp EEG signals.
When the neuronal activity is localized in few focal regions
within the brain, the problem becomes to localize the locations
of such activated focal regions, which is usually referred to as
source localization. For example, source localization has been
found useful in localizing epileptogenic foci in epilepsy patients.
On the other hand, when the brain activity is not localized in a
few focal areas, one needs to image the distribution of neural
electric sources within the brain. Such problem becomes the so-
called source imaging, which shall include source localization
since focal sources are special cases of distributed sources. 

As opposed to the uniqueness of the forward solution, the
EEG inverse solution is nonunique if no constraints are given due
to the low frequency nature and the limitation of EEG recordings
over the scalp surface only. This nonuniqueness issue has repre-
sented a great challenge to the field. Over the past two decades, a
number of efforts have been made to tackle these challenges and
it is encouraging that we have learnt that it is possible to obtain
valid estimates of solutions of the EEG inverse problem if reason-
able constraints are given on the equivalent source distribution.
For example, if the brain electric sources are assumed to consist
of few moving ECDs (117,118), or a current dipole distribution
over the cortex with orientation being perpendicular to the local
curvature of the cortex (124), or a current dipole distribution
over the brain volume with smoothness a priori (123), in such
cases solutions of the EEG inverse problem can be estimated
yielding results that are consistent with other findings of clinical

neurophysiology and neuroscience. Another challenge existing in
the EEG inverse problem is that it is ill-posed from the viewpoint
of numerical treatment. This ill-posedness of the inverse problem
is handled by various signal processing strategies, which has led
to great success in the field. 

In this section we will discuss the EEG inverse problem in the
following aspects: (i) dipole source localization (DSL); (ii) source
scanning; (iii) distributed source imaging; and (iv) multimodal
imaging integrating EEG source imaging with functional MRI.

Dipole Source Localization
The most classic EEG inverse problem shall be the so-called DSL.
Such DSL approach is applicable when the primary generators of
scalp-recorded EEG signals are localized to one or few small
regions within the brain. Given a specific dipole source model,
DSL can yield solutions of the EEG inverse problem by using a
nonlinear multidimensional optimization procedure, to estimate
the dipole parameters that can best explain the observed scalp
potential measurements in a least-square sense (116–118,
120,145–147). Further improvement of the DSL can be achieved
by combining EEG with MEG data that may increase informa-
tion content and improve the overall signal-to-noise ratio
(148,149), or integrated with functional MRI (see the section
“Multimodel Integration of EEG with fMRI” for details).

The EEG DSL can be solved either from the scalp-recorded
EEG at a given time instant or over a time period. The single
time-slice source localization estimates the dipole parameters
based on the single time “snapshots” of the measured scalp EEG
(120). In practice, an initial starting point (also termed seed
point) is selected, then using an iterative procedure, the assumed
dipole sources are moved around inside the brain volume in an
attempt to produce the best match between the measured and
dipole-produced scalp electric potentials. This involves solving
the forward problem repetitively and calculating the difference
between the measured scalp potential vector and the model-
predicted scalp potential vector at each step. The most com-
monly used measure is the squared distance between the two
vectors, which is given by

(55.4)

where D is the objective function that is to be minimized (equal
to GMD if normalized). The EEG dipole inverse solution is
obtained when this objective function is minimized. Due to the
effect of measurement noise, usually one can only estimate one
or two moving equivalent dipoles by use of the DSL approach. In
addition, reciprocal approaches have also been explored in solv-
ing the DSL, in an attempt to improve the numerical accuracy of
the transfer matrices (150).

The EEG DSL can also be solved from spatiotemporal EEG
measurements, which is sometimes termed spatiotemporal
source localization (117). In this approach, multiple dipole
sources are assumed to have fixed locations inside the brain
during a certain time interval, and the variations in scalp
potentials are due only to variations in the strengths of these
sources. The dipole sources are coupled to the scalp poten-
tials by the lead field matrix A as . The task of the
spatiotemporal DSL is to determine the magnitudes and

w�
c�

D � 7w� � c� 7 2

S�

w� � AS�w�
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 orientations of multiple dipoles, whose parameters could best
account for the spatial distribution as well as the temporal
waveforms of the scalp EEG measurement. With the incorpo-
ration of the EEG temporal information in the model fitting,
the spatiotemporal DSL is more robust against measurement
noise and artifacts than the single time-slice DSL. However,
once the locations of dipoles become unknowns, the problem
becomes a nonlinear optimization problem and the number
of dipoles that can be estimated reliably is limited. 

All equivalent dipole algorithms need an a priori knowledge
of the number and class of the underlying dipole sources. If the
number of dipoles is underestimated for a given model, then
the DSL inverse solution is biased by the missing dipoles. On
the other hand, if too many dipoles are specified, then spurious
dipoles may be introduced. So while efforts have been made to
estimate the number of dipoles based on information criterion
theory (151), the prior information with regard to the number
of dipoles remains to be the limitation of EEG DSL. Sometimes
such information is provided based on the neurophysiology
and pathology such as the case when there is a clear focal region
of epileptiform activity (152–154), or known physiology such
as somatosensory-evoked potentials (118).

The EEG DSL solution can be further improved when prior
information is available with regard to the possible solution space.
If the observed EEG signals are known to be mainly produced by
cortical sources, then the solution space can be restricted to the
cortex surface while excluding deep source locations such as the
brainstem. In particular situations, when a priori information is
known on the possible source region (such as the sensory EP data,
or based on preliminary diagnosis of the epilepsy), the solution
space can be restricted to only half of the brain or even more
focused on a certain lobe. Computer simulation and experimen-
tal studies have also demonstrated that the inverse solution of the
DSL is more accurate when using the realistic geometry head
model than the simplified spherical head model (155–157).
Furthermore, by registration with the magnetic resonance images,
the coordinates of the estimated dipole sources can be visualized
relative to the brain anatomy. Therefore, it has great potential to
reveal the electrophysiologically active neural substrate underly-
ing the scalp potential measurements and facilitate comparison
with other functional imaging modalities (158,159), and has clin-
ical significance in detecting the epileptic foci (160,161), presurgi-
cal localization of sensorimotor cortex (162,163), and some other
applications.

Source Scanning
The source localization problem can also be solved by means of a
source scanning procedure (164–168). The source scanning tech-
nique avoids solving difficult multidimensional nonlinear opti-
mization problems (118,146,152). The scanning results from the
subspace source localization approaches will directly provide an
estimate of the source distribution in the 3D brain volume. The
source scanning approach, which scans each point in the brain
volume and returns a metric about how much chance there is a
source at the point, may also be used for source imaging. A rep-
resentative source scanning algorithm is the multiple signal clas-
sification (MUSIC) algorithm (164), which has been used to scan

through the 3D brain volume (solution space) to identify sources
that produce potential patterns that lie within the signal subspace
of the EEG measurements (164). Furthermore, a recursive
method (RAP-MUSIC) has been developed in order to overcome
the “multiple-peak picking” problem of the original MUSIC scan
(166). Recently, another source scanning algorithm (first princi-
ple vectors, FINE) (167) has been introduced to localize sources
with high resolution, and extended to include realistic geometry
inhomogeneous head model (168). The applicability of FINE
scanning algorithm has been shown in a group of patients of
focal interictal epileptogenic activity (38). The FINE algorithm
(167,168) is developed under the framework of the subspace
source localization approach (164) and solves the spatiotemporal
source localization problem using a scanning strategy instead of
optimizing a multidimensional cost function. In principle, the
subspace source localization approach scans the entire possible
source space and calculates the subspace correlation of two sub-
spaces (166). One subspace is spanned by each scanned point and
another one is estimated from the scalp EEG, which is known as
the noise-only subspace. If the subspace correlation is approxi-
mate to zero against the noise-only subspace for one possible
source point, this point is regarded as a source. Multiple sources
could thus be obtained at multiple extreme values. The FINE
algorithm calculates the correlation to a particular subset of the
noise-only subspace instead of the entire noise-only subspace,
which helps to achieve high spatial resolution. Computer simula-
tion results suggested the enhanced spatial resolution and robust-
ness against source coherence of FINE in comparison to MUSIC
or RAP-MUSIC (167,168). Applications to epilepsy source local-
ization demonstrated the ability of FINE in localizing seizure foci
(40). Further development of source scanning approach has also
been reported (169) in which a higher order source model is used
instead of dipole model, enabling imaging of complex activation
patterns in humans induced by visual stimulation.

In addition, another technique called beamforming, which is
based on linear spatial filtering, can be used to estimate the
source activity at a region of interest or every individual loca-
tion in the source space (170,171). The beamformer for a spe-
cific region of interest or source location is derived in an
attempt to minimize the interference from other locations. 

A source localization that was specifically developed for
localization of focal epileptic activity is a method called EPIFO-
CUS (172). Like the MUSIC method, this technique searches
for focal sources in the solution space (which can be restricted
to the gray matter). EPIFOCUS is a linear inverse solution and
requires no nonlinear optimization procedure to find the best
fit. The result of EPIFOCUS can be interpreted as the probabil-
ity of a focal source (with a certain spatial extent) at any given
point in a discrete solution space. The reliability of EPIFOCUS
to determine focal epileptic sources has been demonstrated in
several studies (15,173,174).

Distributed Source Imaging
Compared with DSL or source scanning approaches, the dis-
tributed source imaging approach has received considerable
attention in recent years. Such distributed imaging approaches
are motivated by the need to image brain electric activity that
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may not be a few focal sources, and to minimize the error due
to misspecification of the number of dipole sources. The dis-
tributed source imaging may be categorized into two groups:
distributed current density imaging and equivalent potential
imaging, both of which have been studied extensively.

Distributed Current Density Imaging

Unlike the point dipole source models, the distributed source
models do not make any ad hoc assumption on the number of
brain electric sources. Instead, the equivalent sources are dis-
tributed over the source space. For example, the distributed
source model may consist of a large number of current dipoles
placed over the 3D brain volume (123) or over the gray matter
of cortex (124,132). Regardless of the current source models
being used, the current dipoles are fixed at preset locations, so
they are not movable. The unknown parameters are the dipole
moments, which are to be estimated by minimizing the differ-
ence between the measure and source model–predicted scalp
electric potentials. 

Assuming quasistatic condition and the linear properties of
the head volume conductor, the brain electric sources and the
scalp EEG could be mathematically described by the following
linear matrix equation:

(55.5)

where is the vector of scalp EEG measurements, is the vec-
tor of source distribution, is the vector of additive measure-
ment noise, and A is the transfer matrix relating and . So the
distributed source imaging is to estimate the source distribu-
tion from the noninvasive scalp EEG measurements .
Mathematically, this is equivalent to design an inverse filter B,
which can project the measured data into the solution space:

(55.6)

The above equation indicates that the distributed source
imaging is a linear inverse problem, which avoids the difficulty
of nonlinear multidimensional optimization problem as in the
DSL approach. However, the linear inverse approach is intrinsi-
cally underdetermined, because the number of unknown dis-
tributed sources is much larger than the limited number of
scalp EEG electrodes. Additional constraints have to be
imposed in order to obtain unique and well-posed linear
inverse solutions. A well-studied solution to this linear inverse
problem is the so-called general inverse, which is also termed
the minimum norm least-squares (MNLS) inverse, minimizing
the least-square error of the estimated inverse solution under
the constraint in the absence of noise (175). Other
variations of the MNLS include the lead field normalized
weighted minimum norm (WMN) (176), low-resolution brain
electromagnetic tomography (LORETA) (123), local autore-
gressive average (LAURA) (177), and others. Furthermore, by
normalizing the source estimates with respect to the correspon-
ding noise sensitivity, one can assess the statistical significance
of the inverse solution and obtain a map of source estimate sta-
tistics. Along this line, Dale et al. and Pascual-Marqui et al. have
developed two statistical functional mapping techniques,

w� � AX� � n�

w� X�

n�
w� X�

X� w�

X� � Bw�

X�

w� � AX�

known as dynamic statistical parametric mapping (dSPM)
(178) and standardized LORETA (sLORETA) (179), based on
the MNLS and LORETA algorithms, respectively (180). 

The EEG linear inverse solutions enjoy the merits of solving a
linear inverse problem but end up with low-resolution images of
current density or its statistics. One way to improve the spatial
resolution is to generate images with focal source distribution by
iteratively repeating the linear inverse computation (181,182).
For each step during the iteration, the linearly computed inverse
solution from the previous step is used as the weighting factors to
constrain the linear source estimates in the current step. As such
a recursive process continues till convergence, the estimated
source distribution tends to shrink to be more focalized. Other
than L2 norm estimates that are to minimize the energy function,
Lp norm estimates with P = 1 or other values have also been
explored (147,183–186). A study by Ding and He (186) demon-
strates the merits of L1 norm–based distributed current density
imaging in imaging focal sources in humans as induced by
somatosensory stimulation (Fig. 55.8). 

Cortical Potential Imaging 

The current density distribution has explicit physical interpre-
tation of neuronal currents, thus being used widely in solving
the EEG inverse problem. Another kind of EEG linear inverse
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Figure 55.8 Sparse source imaging. The image illustrates the concept of
sparse source imaging (SSI) using L1 norm–based generalized minimum
norm estimate. The new SSI algorithm corrects inaccurate source field
modeling in previously reported L1-norm algorithms and proposes that
sparseness a priori should only be applied to the regularization term, not
to the data term in the formulation of the regularized inverse problem.
The right lower part of the illustration shows that the new SSI is evaluated
using somatosensory-evoked potential data with subdural electrocortico-
graphic (ECoG) recordings in a human subject. (Cover image of Human
Brain Mapping, September 2008 issue for article by Ding and He (186).)
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solution is to estimate the extracellular potential distribution
from the scalp EEG. Cortical potential imaging (CPI) has been
well studied that aims to reconstruct the distribution of electric
potentials over the epicortical surface that can equivalently rep-
resent the enclosed brain electric sources (37,56,129,187–195).
In this case, the source vector in Eq. (55.5) refers to electric
potentials instead of current density. Imaging of electric poten-
tial over the epicortical surface has a unique feature that it
returns cortical potentials, which are routinely measured by use
of subdural electrode arrays in epilepsy patients. 

The CPI employs a distributed source model, in which the
equivalent sources are distributed in 2D cortical surface, and no
ad hoc assumption on the number of source dipoles is needed
(37,129,138,139,187–196). Using an explicit biophysical model
of the passive conducting properties of a head, the CPI attempts
to deconvolve a measured scalp potential distribution into a
distribution of the electric potential over the epicortical surface.
Because the cortical potential distribution can be experimen-
tally measured (190,195,197) and compared to the inverse
imaging results, the CPI approach is of clinical importance.
Essentially not affected by the low-conductivity skull layer, CPI
offers much-enhanced spatial resolution in assessing the under-
lying brain activity as compared to the blurred scalp potentials.
Figure 55.9 shows an example of cortical potentials estimated
from the scalp EEG and directly measured using subdural grids
in a human  subject, around 30 msec after the onset of right
median nerve stimuli. The scalp potential map (Fig. 55.9A)
shows dipolar pattern of N/P30, with frontal negativity and
parietal positivity over the left scalp. The smearing effect of the
scalp potential map was greatly reduced in the inversely esti-
mated cortical potential map (Fig. 55.9B), which shows much
more localized areas of positivity and negativity in the posterior
edge of the electrode grid. The recorded cortical potential map
is shown in Figure 55.9C. Note the estimated and recorded grid
potentials have similar distribution patterns, with averaged CC
value of 0.84. Moreover, the central sulcus was clearly demar-
cated in both the estimated and recorded grid potential maps,
by the separation of negative and positive potential extrema.

In addition to cortical potential, the extracellular potentials
have also been estimated over the entire 3D brain volume in an

X�

approach called ELECTRA (102,126). Although the validation
is difficult since the depth electrodes are normally not covering
a large volume, this approach theoretically does suggest the pos-
sibility of estimating local field potentials in the brain volume.

Multimodel Integration of EEG with fMRI 
Integrating electrophysiologic source imaging with functional
constraint derived from the hemodynamic imaging modalities
has drawn great attention during the past decade (see Ref. 198
for a detailed review). The motivation for integrating EEG/MEG
source imaging with fMRI is based on the different strengths
and limitations of these two modalities that are precisely the
obverse of each other, that is, EEG/MEG enjoys high temporal
resolution but limited spatial resolution, and fMRI has high spa-
tial resolution but poor temporal resolution. The fundamental
assumption of the multimodal integration approach is that
regions in the brain that show increased metabolic activity are
also on the average more electrically active over time.

The earliest efforts in the E/MEG–fMRI integrated imaging
utilized fMRI statistical parametric maps to obtain a priori
information on where brain electric sources are likely located.
The spatial information derived from fMRI has been used to
constrain the locations of multiple current dipoles (199,200), or
to constrain the distributed source distribution (178,201–207).
When neural activity is confined to a few small regions, the fMRI
activation mapping should yield several hotspots, which can be
used to constraint the equivalent dipole locations or as initial
locations in the DSL. Once the dipole locations are recon-
structed from the EEG data, the time course of dipole moments
represents the temporal dynamics of the regional neural activity.
Such fMRI-seeded dipole fitting technique is usually used to
retrieve the time course of the brain activity at identified fMRI
activation foci instead of imaging brain activity. On the other
hand, the fMRI-constrained distributed source imaging (i.e.,
fMRI is used as constraint in the distributed source imaging)
can be applied to brain sources that are either focal or extended.
The fMRI-constrained current density imaging has been
explored, in the framework of Wiener filter (124,178,201) or
WMN frameworks (202,203). The major technical limitations
of the above-mentioned approaches are primarily due to the
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Figure 55.9 At latency of 30 msec after the onset of right median nerve stimuli for a patient: (A) the recorded scalp poten-
tial maps, (B) the estimated subdural grid potentials, and (C) the direct recorded subdural grid potentials. All the maps are
normalized and the color bars are shown on the right. The CC value between the estimated and recorded subdural grid poten-
tials is 84%. (From He B, Zhang X, Lian J, et al. Boundary element method-based cortical potential imaging of somatosen-
sory evoked potentials using subjects’ magnetic resonance images. Neuroimage. 2002;16:564–576.) (See color insert)
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 fundamental mismatches between fMRI and EEG (or MEG),
owing to different temporal scales in which fMRI and EEG tem-
poral dynamics are generated and collected. The
fMRI–EEG/MEG mismatches include fMRI extra sources, fMRI
invisible sources, and the fMRI displacement (201,202,206), and
it is problematic to constrain the temporally variable current
source estimates to “time-invariant” fMRI spatial priors, which
may result in fMRI false positives or false negatives.

Efforts have been made to tackle this challenge caused by the
different time scales of BOLD fMRI signals and EEG signals, by
means of data-driven approaches. For example, the fMRI
weighting factor may be selected from data by means of the
expectation maximization (EM) algorithm (205,208), or alter-
natively a two-step estimation algorithm, so-called Twomey
regularization, can be used to achieve reasonable estimation of
the fMRI weighting factor (206). Recently, a new framework for
the fMRI–EEG/MEG integrated neuroimaging has been pro-
posed (207). The system assumes a common neuronal source
(i.e., synaptic activity), from which fMRI and EEG signals are
generated via a temporal low-pass filter and a spatial low-pass
filter, respectively. The EEG inverse problems essentially deal
with the spatial deconvolution—the process of reversing the
head volume conduction. The EEG inverse solution retains the
temporal source evolution even though it may fail to recon-
struct the spatial source distribution. In other words, at every
source location, the source waveform estimated from EEG is
much less distorted than its absolute magnitude, since the

 filtering applies to the spatial domain instead of the time
domain. This feature is opposed to the temporal regression of
fMRI data, which theoretically ends up with high-resolution
spatial maps of brain activations but with little or no temporal
information. To integrate the EEG and BOLD signals, the
BOLD effect size estimated from the fMRI signal in each voxel
is set to be proportional to the time integral of the local source
power underlying the ERP signals (207). The source estimates
are further fitted to the EEG data by means of an adaptive
Wiener filter (207). Figure 55.10 shows an experimental exam-
ple in a human subject exploring the cortical pathway special-
ized in processing unilateral visual stimuli (207). The
experiment included two separate sessions with the identical
visual stimuli for the EEG and fMRI data collection. The visual
stimulation was a rectangular checkerboard within the lower
left quadrant of the visual field; the checkerboard pattern was
reversed at 2 Hz. The dynamically integrated EEG–fMRI imag-
ing algorithm (207) revealed a pathway sequentially activating
V1/V2, V3/V3a, V5/V7, and intraparietal sulcus, in general
agreement with the hierarchical organization of the visual sys-
tem (209). This pathway was also observed in the low-resolu-
tion images reconstructed from the VEP alone. In contrast, a
fMRI-weighted source imaging algorithm (178,201) showed a
false-positive source region in and around V1/V2 at the latency
of 212 msec, whereas a more likely high-tier EEG source around
V5, as observed from the EEG data, was missed. This experi-
mental result indicates the promises in dynamic neuroimaging
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Figure 55.10 fMRI–EEG integration. A: The pattern-
reversal checkerboard visual stimulation, (B) fMRI acti-
vation map with a corrected threshold P � 0.01, and (C)
the global field power of VEP and the dynamic cortical
source distribution at three VEP latencies (76, 112, 212
msec after the visual onset) imaged from EEG alone
(first row), or fMRI–EEG integration using our proposed
adaptive wiener filter (second row) and the conven-
tional 90% fMRI-weighted algorithm (third row). Both
the source images and the fMRI activation map are visu-
alized on an inflated representation of cortical surface.
(From Liu Z, He B. FMRI–EEG integrated cortical source
imaging by use of time-variant spatial constraints.
Neuroimage. 2008;39:1198–1214.)(See color insert)
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by integrating fMRI with EEG using the model-based adaptive
Wiener filter (198). 

New EEG recording systems together with advanced artifact
correction algorithms (79,80) allow recovering the EEG signal
that is acquired in the scanner. This opens new possibilities to
study the relation between hemodynamic and electric activity,
but also to directly combine the temporal resolution of the EEG
and the spatial resolution of the fMRI during the same brain
state. Several recent studies have used this technique to study the
relation between different brain rhythms and the BOLD
response (210,211) and the relation between the so-called brain
resting state and specific oscillatory activity recorded with the
EEG (212–214). With the use of high-density EEG in the scan-
ner, source imaging of this EEG has also become possible. This
is particularly interesting in epilepsy where the spike-related
fMRI activity can be compared with the source imaging result of
the very same spikes. Such studies have recently demonstrated
the capability of the EEG source imaging to temporally disen-
tangle the different activated regions seen in the spike-triggered
fMRI as illustrated in Figure 55.11 (215,216). This figure also
shows that EEG source imaging is also possible in patients with

large brain lesions, indicating that conductivity changes due to
such lesions are not as important as one might believe. This has
been recently demonstrated in a systematic study in a series of
epileptic patients with large brain lesions (217).

CONNECTIVITY ANALYSIS

Static images indicating brain regions responsible for the execu-
tion of particular tasks do not convey sufficient information
with respect to how these regions communicate with each
other. The concept of brain connectivity now plays an impor-
tant role in neuroscience, as a way to understand the organized
behavior of brain regions (218). Previously, some investigators
have computed cortical connectivity patterns based on hemo-
dynamic or metabolic measurements such as fMRI (219,220),
whereas the sluggishness of the hemodynamic process con-
founds its interpretation in terms of neuronal interaction
(221). The use of EEG data to examine the functional connec-
tivity has a long and rich history (222,223). A variety of tech-
niques have been used, most of which have amounted to
evaluating the cross-correlation or phase synchronization of
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Figure 55.11 Combined EEG–fMRI in epilepsy. Comparison of fMRI and EEG source imaging. A patient with focal
epilepsy has been recorded with 32-channel EEG in a 1.5-T MR scanner. Spikes were marked and the significant BOLD
responses related to these spikes were determined. Two foci were found around the large lesion: one right lateral parietal
and the other mesial parietal. The same spikes recorded in the scanner were cleaned and subjected to EEG source imag-
ing using a distributed linear inverse solution constrained to the gray matter determined from the patient’s MRI. A tempo-
ral propagation of the activity was found, with the initial activity in the right parietal lobe, followed by activation in mesial
parietal areas. Thus, the foci found in the fMRI were confirmed and temporally resolved. The patient was seizure free after
surgical resection of the right lateral parietal focus. (Data collected by M. Siniatchkin, University Hospital of Pediatric
Neurology, Kiel, Germany. For details and more examples see Ref. 215.)(See color insert)
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Figure 55.12 Connectivity estimation. Left panel: Functional connectivity
patterns estimated in a subject during the performance of finger tapping
movement, after the EMG onset. Each pattern is represented with arrows
moving from one cortical area toward another. The color and size of the
arrows code the level of strength of the functional connectivity observed
between ROIs. The labels indicate the names of the ROIs employed. Right
panel: Outflow patterns in all the ROIs obtained for the same connectivity
pattern depicted in top left. The figure summarizes in red hues the behavior
of a ROI in terms of reception of information flow from other ROIs, by adding
all the value of the links arriving on the particular ROI from all the others.
The information is represented with the size and the color of a sphere, cen-
tered on the particular ROI analyzed. The larger the sphere, the higher the
value of inflow or outflow for any given ROI. The blue hues code the outflow
of information from a single ROI toward all the others. (From Babiloni F,
Cincotti F, Babiloni C, et al. Estimation of the cortical functional connectiv-
ity with the multimodal integration of high-resolution EEG and fMRI data by
directed transfer function. Neuroimage. 2005;24:118–131.)(See color insert)

Figure 55.13 Ictal source imaging. A: Three second–long 31-channel scalp waveforms for subspace source localization
analysis. B: Example of a 3D scanning result by FINE for an ictal activity displayed with gray MRI slices. The pseudocol-
ors show the reciprocal of subspace correlation (SC). Red: low SC; blue: high SC. The extent of pseudocolors indicates the
coverage of the possible solution space. Three identified sources in the 3D scanning are marked with red, blue, and green
dots, respectively. C: Locations (pseudocolors on MRI images), waveforms (green curves), and causality patterns (big
arrows) for identified sources from B. (From Ding L, Worrell GA, Lagerlund TD, et al. Ictal source analysis: localization
and imaging of causal interactions in humans. Neuroimage. 2007;34:575–586.)(See color insert)

signals between pairs of scalp electrodes or sensors (224).
Additionally, it has also been exploited that scalp connectivity
patterns can be estimated by other methods (225,226). Graph
theory-based tools from the study of complex network have
also been developed to describe the connectivity of large-scale
networks (227). However, the relation between the observed
connectivity pattern in the sensor space and that in the source

space is complicated by the dispersion of electromagnetic sig-
nals from the cortex to the sensors.

EEG source imaging techniques have been used in combi-
nation with connectivity estimators to noninvasively assess the
brain connectivity using methods such as structural equation
modeling (SEM) (228,229) and the directed transfer function
(DTF) (204). Figure 55.12 shows an example of functional
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connectivity patterns as estimated by means of DTF from EEG
and functional MRI of a human subject during a motor task
(204). It shows connectivity among several regions of interests
involved in the motor task. 

DTF-based connectivity analysis methods showed promises
in localizing epileptogenic foci from interictal spikes (230,231)
and from seizures (232) as recorded from ECoG. The functional
connectivity in epilepsy patients has also been estimated by
applying DTF analysis to 3D current source activity recon-
structed from ictal EEG using the FINE source scanning
method (40). Figure 55.13 shows an example of the clinical
application of connectivity imaging. From ictal EEG data, three
putative sources were estimated by means of the FINE source
scanning algorithm. The causality among each pair of the three
sources, as determined from the source waveforms, was
assessed. The causal interactions from the “red” and “green”
sources to other sources are deemed significant but not the
causal interactions from the “blue” source. Based on this con-
nectivity analysis, it was concluded that the “red” and “green”
sources are deemed to be primary seizure sources while the
“blue” secondary source. Comparison with MR-visible lesions
in the patient supported this conclusion derived by connectiv-
ity analysis (40). 

CONCLUSION

This chapter focused on modern analysis techniques that con-
vert the EEG to a functional neuroimaging modality. This
translation from waveforms to images includes several process-
ing steps that need to be understood and performed properly. It
starts with the appropriate spatial sampling of the scalp poten-
tial field and ends with proper statistical evaluation of the
reconstructed time series of electric activity in the brain. 

Concerning the spatial sampling the recent literature
strongly suggests that a high number of recording channels are
desirable to avoid undersampling of the spatial frequency of the
EEG. With modern technology this is not a limiting issue any-
more, and 64 to 128 channels of EEG are recorded in many labs.
EEG can nowadays easily be sampled from 200 and more elec-
trodes, with electrode nets that allow fast applications even in
clinical routine. 

Reconstruction and visualization of the scalp potential maps
are an important step in EEG source imaging. On the one hand,
it serves to detect map distortions due to artifacts that are invis-
ible on the EEG traces. On the other hand, EEG mapping allows
to statistically assess time points where map topographies
changed over time or between experimental conditions. By
physical laws, different map topographies indicate different
configurations of the active sources in the brain. Analysis strate-
gies that are based on the topography of the potential field also
have the important advantage of being completely reference-
free, which is not the case for the analysis of peaks and troughs
of EEG or ERP waveforms, and also not for the analysis of
coherence or correlations between different electrode sites.

Two main models are involved in EEG source imaging: the
head model and the source model. In this chapter we not only

described the historical evolution of these models, but also made
clear that a distinction between simple source localization and
comprehensive source imaging should be made. The single
equivalent dipole fitting approach in a simple spherical head
model, which was still state of the art in the last edition of this
book, has been largely replaced by imaging of distributed
sources in the realistic geometry head model defined by struc-
tural MRI. A rapidly growing number of experimental and clin-
ical studies appeared, demonstrating the promising capability of
these new techniques. Most impressive are the results in epilepsy
where EEG source imaging is used to localize the epileptogenic
zone. The fact that the very same methods also allow to localize
eloquent cortex with impressive precision renders electric neu-
roimaging one of the most promising methods in the frame-
work of presurgical evaluation of patients with functional and
structural brain lesions. 

The temporal resolution is the key advantage of the EEG.
However, it also increases the complexity and demands addi-
tional analysis steps for electric neuroimaging compared to the
other (static) imaging procedures. We here described different
methods to deal with the temporal dynamics of the brain elec-
tric activity. One of them is based on spatiotemporal decompo-
sition of the topographic maps. It allows to define the most
dominant scalp topographies during given time periods and
thus permits a reduction of the complex data in time and space.
Source imaging procedures can then be applied to this reduced
data set only. Since the potential maps represent the real record-
ings and do not yet rely on models, a preprocessing of the data
based on the maps might be more prudent than directly con-
verting the raw data to source images and perform all analysis in
the source space. Nevertheless, several interesting studies
appeared recently that showed the  possibilities of analysis of the
source waveforms. Most interesting are the applications of con-
nectivity analysis techniques to these source waveforms. They
allow to study causal interactions between different sources in
the brain. 

In summary, this chapter tried to illustrate that the temporal
resolution of the EEG, together with the capability and reliabil-
ity of modern source imaging algorithms, has converted the
EEG to a fully fledged functional neuroimaging method that is
not secondary to, but instead is a perfect companion to fMRI
and other neuroimaging methods.
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I f someone would compare older editions of this chapter
with the present one, he or she would notice how the field
of computerized diagnostic systems has rapidly evolved in

the last decade that is reflected in the emergence of new algo-
rithms every year, while some older ones have become obsolete.
Nonetheless, much of the older literature continues to be valid
inasmuch as it illustrates basic concepts and may guide new
researchers to find their way in this frontier between clinical
neurophysiology and the technology of applied signal analysis.
This kind of review of relatively old literature may help to avoid
each generation trying to invent the wheel again. Here we pay
attention also to recent developments and new trends. We
should note that some new algorithms are simple variants of
previous approaches. Very often the performance of the new
ones is not assessed with respect to the older versions that leads
to some lack of transparency in this field.

A common denominator of the field of computer-assisted
EEG diagnostic systems is the application of pattern recogni-
tion methods. The latter constitute a general class of procedures
applicable in a variety of scientific areas. The first operation in
EEG analysis is to define a pattern, that is, to choose a set of fea-
tures that are potentially important in identifying the phenom-
ena of interest. This set of features constitutes a pattern. The
second operation may be the classification or clustering of the set
of features. According to the former one must assume a priori
that there exists a number of classes (e.g., clinical
normal/abnormal) to which the objects must be allocated;
according to the clustering approach, however, it is not neces-
sary to define a predetermined number of classes. Rather, in this
case the aim is to find clusters of objects based on a given sta-
tistical criterion. In the classification approach one chooses a
group of EEGs, the so-called learning set, to determine the set of
features that gives the best possible discrimination between the
classes, for example, applying Fisher’s linear discriminant analy-
sis. Thereafter, the best set of features can be used to classify any
other group of EEGs that constitute the test sets.

Clustering requires little or no specific a priori knowledge;
the objects are grouped in clusters applying a clustering algo-
rithm. The user must determine, however, the most convenient
level at which clustering must be stopped, according to the spe-
cific problem being analyzed. Thereafter, the relevance of the
clusters obtained with respect to the specific clinical applica-
tion, or any other application of interest, must be evaluated.

Since in EEG analysis, most methods of analysis follow a pat-
tern recognition approach, explicitly or not, we consider here
the most important aspects of such an approach in relation to
general problems of automatic EEG diagnosis. For a thorough

treatment of pattern recognition theories, the reader is referred
to the classic books of Duda and Hart (1), Mendel and Fu (2),
and Tou and Gonzalez (3), and to the review of Demartini and
Vincent-Carrefour (4) that deals with the specific field of EEG. 

FEATURE EXTRACTION: 
SPECIFIC PROBLEMS

The usefulness of any EEG analysis method depends, to a large
extent, on the choice of the set of features that is relevant to
answer the question being investigated. In this section we con-
sider, first, the main types of features used in EEG analysis in
general terms; then we examine how these features can be incor-
porated into EEG classification systems in specialized cases.

Time-Domain Analysis Methods
Methods aiming at extracting time-domain EEG features were
used in the early period of EEG quantification but are less used
recently. The main features used in this context are derived
from EEG amplitude analysis: the features ordinarily chosen are
mean (m), standard deviation (�), skewness, kurtosis, and coef-
ficient of variation [(�/m) � 100] of EEG signals; these are
computed from the original signal as discussed in Chapter 54.
Furthermore, one can also define similar features for the recti-
fied signal: mean, standard deviation, and coefficient of varia-
tion. Furthermore, interval analysis of EEG signals yields a
number of other features: average frequency of zero crossings of
the original signal and also of its first and second derivatives.
The combination of amplitude and interval analysis (see
Chapter 54) yields a set of features that can characterize EEG
signals; in addition to those described above, a few others may
be chosen such as the signal half-wave length and its derivatives
(mean, standard deviation, and range), peak-to-peak values per
wave (mean and standard deviation), and amplitude range (i.e.,
the difference between the largest and the smallest amplitude
value within a certain time epoch). Other features that have
been included in this kind of analyses are Hjorth’s parameters:
activity, mobility, and complexity, and parameters extracted
using time–frequency analyses, for example, those obtained by
wavelet decomposition, as explained in Chapter 54. 

Spectral Analysis Using Nonparametric Methods
The most common features extracted from EEG, however, are
derived by way of spectral analysis, such as the spectral intensity
within the classic frequency bands, namely the mean spectral
intensity (power or amplitude) and the average  frequency.
Although this may be rather trivial, it is important to consider
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the fundamental question of how to define the EEG frequency
bands. According to the generally accepted empirical defini-
tions, one may use the subdivision indicated in Table 56.1. A
question that should be asked is whether the activities in differ-
ent frequency bands are independent, or not. This question can
be answered by means of multivariate statistical analysis of EEG
spectral values. This issue has been investigated thoroughly in
the 1970s when the first computerized systems were started to
be developed. Hermann et al. (7) using factor analysis chose 57
relative power values in frequency bands between 1.5 and 30 Hz
with frequency resolution f = 0.5 Hz, as well as absolute power
values. In this way, it was found that the power spectrum could be
broken down into the frequency bands indicated in Table 56.1.
Dymond et al. (8) also performed factor analysis of power spec-
tra (log transformed) of bilateral centro-occipital leads and
extracted four main factors having high loadings within the fol-
lowing frequency bands: 0 to 8, 6 to 12, 12 to 20, and 20 to 30 Hz;
they also extracted factors associated with EEG asymmetry.

It should be noted, however, that applying factor analysis to
sets of power spectra is not simple. The results depend on (i)
whether the spectra are expressed in power or in root mean
square (RMS) values, (ii) the way the spectra have been normal-
ized, (iii) the derivations that were included, and (iv) the
 subject population. The results of an investigation of the

University Hospital of Utrecht (Wieneke, personal communica-
tion), which factorized frequency bands of power spectra (log-
arithmic values) obtained from eight symmetrical derivations
in 89 patients, are shown in Table 56.1; in this case, normaliza-
tion was performed using the band from 5 to 20 Hz as refer-
ence. The distribution of the most important frequency factor
loadings obtained in this way for different derivations is given
in Figure 56.1. We should emphasize that this type of analysis is
sensitive to normalization and scaling. It is remarkable, how-
ever, that the different methods presented in Table 56.1 yield
results that display a considerable degree of overlapping with
respect to the different frequency bands. The frequency bands
calculated in this way are also clearly compatible with those
used in classical EEG; therefore, it may be said that a subdivi-
sion in frequency bands as used by Matousek and Petersén (5)
or Gotman et al. (9) is acceptable for routine clinical EEG
analysis. If one deals with a completely defined group of EEGs
(e.g., in psychopharmacologic studies where one has a group of
subjects receiving a drug and a control group), factor analysis
may preferably be applied to such a specific group in order to
define the optimal frequency bands that should be used in that
specific study. Within the defined frequency bands, several pri-
mary spectral features, such as absolute power intensity in �V2

or in dB, relative power, square root of power, and average
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Table 56.1

EEG Features Obtained from Spectral Analysis

Frequency Bands Factor Analysis

Classical Matousek   Wieneke
Definition and Gotman Hermann (personal

(Hz) Petersén (5) (6) Weighting Factors, K et al. (7) communication)

Frontal Other 
Channels Channels

0   � �1 � 1.9 0.4–1.2 1.5 2

2   � �2 � 3.4 1.5–3.5 1.6–4.0 4 4 1.5–5.5 1.5–6.0

3.5 � �1 � 5.4 4.4–6.4 3 5

5.4 � �2 � 7.4 3.5–7.5 6.8–7.2 3 1 5.5–8.5 6.0–9.0

7.4 � �1 � 9.9 7.5–9.5 8.6–10.5 9.0–10.5

9.9 � �2 � 12.4 9.5–12.5 7.6–12.8 1 1.5 10.5–12.0 10.5–12.5

12.5 � 	1 � 17.9 12.5–17.5 12.0–18.0 12.5–15.5

18.0 � 	2 � 23.9 13.2–30.0 1 0.5 18.0–21.0 15.5–18.5

24.0 � 	2 17.5–25.0 21.0–30.0 18.5–28.0

Ratios used 
for discrimination

(� and �
in V), 
asymmetry Q

k1d1 
 k2d2 
 k3�1 
 k4�2

k3 � � 
 k6	

Asymmetry ratios e � 
 �

� 
 	

�

� 
  cs1
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 frequency within a band, can be computed. Secondary spectral
features can also be derived. Several types of secondary features
have been proposed based on empirical criteria; clinical appli-
cation has validated those proposed by Matousek and Petersén
(5) and by Gotman et al. (9). Matousek and Petersén (5) inves-
tigated 20 features extracted from the frequency spectrum of
each EEG derivation. This study was based on the authors’
claim that an increased amount of slow frequency in the EEG in
abnormal cases might be considered analogous to the relatively
large amount of slow activity seen in the normal but immature
EEG. Initially, the EEG score chosen as being the most clearly
age-related was the ratio between theta-band activity (3.5 to
7.5 Hz) and the alpha-band activity (7.5 to 12.5 Hz) added with
a constant factor.

The same group later reinvestigated this problem (10). They
used as normative data the RMS of the spectral values com-
puted within the frequency bands, indicated in Table 56.1, for a
number of derivations (FT-T3, C3-C0, T3-T5, P3-01, and the
symmetrical ones) of 562 EEG recordings from healthy individ-
uals aged 1 to 21 years. A number of ratios between RMS values
were also computed. In total, 20 spectral features per derivation
were calculated, as follows: x(1) = delta activity, x(2) = theta,
x(3) = alpha 1, x(4) = alpha 2, x(5) = beta 1, x(6) = beta 2, x(9)
= alpha 1/alpha 2, x(10) = beta l/(alpha 1 
 alpha 2), x(11) =
beta 2/(alpha 1 
 alpha 2), x(12) = beta 1/beta 2, x(13) =
delta/theta, and x(14) = sum of delta, theta, alpha 1, alpha 2,
beta 1, and beta 2; features from 15 through 20 are normalized
amplitudes in relation to x(14) for the following bands: x(15) =
normalized delta, x(16) = normalized theta, x(17) = norma -

lized alpha 1, x(18) = normalized alpha 2, x(19) = normalized
beta 1, and x(20) = normalized beta 2. 

Friberg et al.’s (10) model is defined by the following linear
equation: calculated EEG age = a(0) 
 a(1)x(1) 
 … 

a(20)x(20). The coefficients a(i), with i = 0 to 20, were esti-
mated by minimizing the sum of squares of the differences
between the subject’s actual age and the calculated EEG age.
The correlation coefficients between actual and calculated EEG
age varied between 0.88 for derivations C3-C0 and C0-C4 and
0.86 for derivations F7-T3 and F8-T4. Those authors found
that, according to their model, the calculated EEG age tended to
be greater than zero when the line was extrapolated down to an
actual age of zero. To avoid this, they introduced two new vari-
ables: the calculated EEG maturity and the actual EEG maturity;
the former is linearly related to the calculated EEG age and the
latter to the actual age. The ratio between calculated and actual
EEG maturity is called the ratio of EEG normality, because the
authors found that this ratio is closely related to the degree of
EEG (ab)normality. To calculate such a ratio, the maximal
actual EEG maturity of any individual is fixed to correspond to
22 years (age-related EEG changes are considered to be small
beyond that age). The clinical implications of this form of fea-
ture extraction and data reduction are discussed below.

Gotman and his collaborators based their procedure for
extracting spectral features on the widely accepted assumption
that some kind of relation between slow and fast EEG activity
should characterize the degree of EEG abnormality. Moreover,
they pointed out that a relative measure of spectral intensity is
preferable to an absolute measure because the latter depends on
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Figure 56.1 Factors found using factor analysis of EEG power spectra. Factor analysis of log-
arithmic power spectra for several derivations was done; power spectra were normalized in
relation to the power within the frequency band between 5 and 20 Hz. Each factor is repre-
sented either by a parallelogram or simply by a horizontal line. The latter or the base of the
parallelogram indicates the frequency interval within which the factor accounts for more than
50% of the variance; the top line of the parallelogram indicates the frequency interval within
which more than 70% of the variance is accounted for by the corresponding factor. The fac-
tors are numbered in the order of decreasing eigenvalues from 1 to 6 or 7. A varimax rotation
was used. The data were obtained from EEGs of 243 patients, each consisting of 100-second
epochs recorded with eyes closed. (Courtesy of G. Wieneke.)
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a number of spurious factors (e.g., skull thickness). Therefore,
these investigators analyzed the potential of several ratios, for
example, (delta 
 theta)/(alpha 
 beta), using different weigh-
ing factors and frequency band subdivisions, to discriminate
the EEG between normal and abnormal subjects (slow-wave
type of abnormality). The best weighing factors for different
frequency bands and areas are given in Table 56.1. The same
investigators introduced still another important spectral fea-
ture, a degree of asymmetry. To compute this feature, the scalp
was subdivided into four symmetrical regions: frontal (Fp1-F3,
Fp1-F7, Fp2-F4, Fp2-F8), temporal (F7-T3, T3-T5, F8-T4, T4-
T6), central (F3-C3, C3-P3, F4-C4, C4-P4), and occipital (P3-
01, T5-01, P4-02, T6-02). For each region, two asymmetry
coefficients were calculated, one for the slow frequencies
(weighted delta and theta values as given in Table 56.1) and one
for the higher frequencies (weighted alpha and beta values).
The value corresponding with the most active hemisphere was
always placed in the numerator. Gotman et al. (9) called the dis-
play of these ratios extracted from spectral values canonograms
(canon is Greek for “ratio”) (Fig. 56.2); the clinical validation of
these features is discussed later in this chapter.

Other spectral features of interest are the spectral peak frequen-
cies and corresponding bandwidths. There are several algorithms
used to calculate peak frequencies: these involve computing a local
maximum of the curve defining the spectral density. A peak is said
to exist when it rises significantly above its surroundings. The
bandwidth is usually calculated as the frequency interval between
the 3-dB points at both sides of the peak.

A comprehensive analysis methodology that combines
quantitative EEG and EP features is the approach introduced by
John and collaborators and reviewed extensively in John et al.
(11,12) and Prichep and John (13), under the name of neuro-
metrics. This approach is based on the use of standardized data
acquisition techniques, computerized feature extraction, statis-
tical transformations in order to achieve approximately
Gaussian distributions, age regression equations, and multi-
variate statistical methods, namely discriminant and cluster

analyses to achieve differential diagnosis between patients’
(sub)populations. In this way, neurometric test batteries were
constructed and applied to several clinical problems. A general
battery consists typically of the following features: spectral
composition, coherence, and symmetry indices of the sponta-
neous resting EEG; in addition, brainstem auditory evoked
potential (BAEP) and brainstem somatosensory evoked poten-
tial (BSEP) to unilateral stimuli, checkerboard pattern reversal
or flash visual EPs, and cortical EPs to different modalities both
to predictable and unpredictable stimuli, are also included. This
approach can be implemented in a personal computer.

Profiles of neurometric features that deviate from age-
matched normal subjects have been obtained in several
 categories of patients suffering from cognitive disorders (e.g.,
dementias), psychiatric illnesses (e.g., different types of depres-
sions and of schizophrenia), and neurologic dysfunctions, for
example, compromised cerebral blood flow (14), as discussed
by John et al. (12) and Prichep et al. (15). The clinical relevance
of neurometrics is controversial and has led to publications pre-
senting opposite points of view by John (16) and Fisch and
Pedley (17). A special effort was made by John and collabora-
tors to apply the neurometrics approach of quantitative EEG
analysis to distinguish subgroups of patients with psychiatric
disorders also with the aim of identifying potential responders
to pharmacologic treatments (18). This was applied to patients
suffering from obsessive–compulsive disorder (OCD) who
received treatment with selective serotonin reuptake inhibitors
(SSRIs) with the interesting result that the responders and non-
responders presented distinct neurometric profiles (19,20). 

Spectral Analysis Using Parametric Methods
In Chapter 54 we discussed the general theory of spectral analy-
sis employing ARMA or AR models. One of the main advan-
tages of these parametric methods of computing power spectra,
as proposed initially by Zetterberg (21), is precisely the fact that
the use of spectral parameter analysis (SPA) avoids having
to subdivide the spectrum in distinct frequency bands

1206 Part IX ■ Computer-Assisted EEG Analysis

Figure 56.2 Canonogram from subject with multiple metas-
tases in right hemisphere. The size of each polygon is propor-
tional to a slow/fast EEG activity ratio, indicator of
abnormality for a channel. They are arranged in a topograph-
ical pattern corresponding to the position of the derivations on
the subject’s head: frontal on top and occipital on bottom.
Arrows under horizontal lines indicate the asymmetry in slow
EEG activity; arrows above indicate the asymmetry in fast EEG
activity. Sixteen channels, anteroposterior bipolar montage
covering parasagittal and temporal regions; EEG epoch, 40 sec-
onds. (Adapted from Gotman J. Problems of presentation of
analytical results. Electroencephalogr Clin Neurophysiol Suppl.
1978;34:191–197.)
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 beforehand. The SPA method describes the EEG as resulting
from noise sources passed through a set of parallel first- or sec-
ond-order filters, as illustrated in Figure 56.3. As demonstrated
by Isaksson and Wennberg (22), the relevant spectral features
can be derived simply. The first-order filter describing the low-
frequency band is characterized by two features: the total power
G and the total bandwidth (interval from zero to the frequency
corresponding to the 3-dB point); each of the second-order fil-
ters describing theta, alpha, and beta components is character-
ized by the three features: G (power), � (bandwidth), and
f (resonance frequency).

Isaksson and Wennberg (22) concluded that, for most prac-
tical applications, a SPA model of the fifth order, at the highest,
is sufficient, although using this order model only the first-
order delta component and the second-order alpha and beta
components can be described. In a few cases, it may be neces-
sary to use a model of the seventh order to include a second-
order theta component. In a study comparing the degree of
visually evaluated slow activity in a large number of artifact-
free EEG epochs with the features identified through SPA of the
same epochs, Isaksson and Wennberg (23) concluded that, for
most derivations, there was a significant linear correlation
between the degree of slow activity encountered with visual
inspection and the value of the features G� (positive correla-
tion) and �� (negative correlation); in a few cases, there was also
correlation with G� (negative correlation) and �� (positive

 correlation). The computation of an ARMA or AR model yields
an important degree of data reduction. The relevant informa-
tion is thus condensed in the coefficients of the model; the num-
ber of coefficients corresponds to the order of the model. As
shown by Mathieu et al. (24) and Jansen (25), the coefficients
can be used to characterize the EEG directly. The importance of
this approach for EEG pattern classification is discussed later.

The Recognition and Elimination of Artifacts:
Eye Movements and Muscle Artifacts
Physiologic and technical artifacts are the outstanding enemies of
automatic EEG analysis. They must be eliminated if computer
EEG analysis is to be used in clinical practice. It is a general
requirement of EEG recording in any clinical laboratory that the
records have a minimum of technical artifacts, a requirement that
is even more critical in automatic analysis. One way to control the
quality of EEG signals while performing analog-to-digital conver-
sion in the clinical laboratory is by simply deleting those epochs
that are below acceptable standards due to technical or to physio-
logic (e.g., ocular or muscular) artifacts. For example, the techni-
cian responsible for this operation may delete the series of
digitized samples immediately preceding an identified artifact.
Nevertheless, there will always be situations in which artifacts,
particularly those of a physiologic nature, are unavoidable. This is
particularly important during long-lasting EEG monitoring in
several clinical (e.g., EEG-video monitoring of epileptic patients)
and experimental (e.g., sleep studies) conditions and when com-
puter-assisted quantification is applied (see also Chapter 35).

Eye movements and muscle potentials occur in most records
of a few minutes’ duration; they can distort power spectra and
lead to detection of transient nonstationarities that may be dif-
ficult to distinguish from epileptiform events. Eye blinks can be
reduced by recording with eyes closed; slow eye movements,
however, are more difficult to avoid. These are bilaterally syn-
chronous with a maximum in frontal derivations and represent
an important contribution to the power in the delta band in
these derivations. In the early days of EEG quantification,
Gotman (6) discussed several methods of avoiding this type of
artifact at the very first stage, for example, by subtracting the
electro-oculogram (EOG). This matter has been reviewed by
Jervis et al. (26) and by Brunia et al. (27). However, the tech-
nique of EOG subtraction may give rise to distortion of the
EEG signals, since the EOG recording also contains brain sig-
nals (28) that may be partially eliminated by filtering first the
EOG with a low pass of about 8 Hz. The transfer of EOG activ-
ity to the EEG can be analyzed using a frequency domain
approach. Eye blinks and slow eye movements have different
spectral properties and are transferred in different ways to the
skull. Gain functions for transferring both types of eye move-
ments to the skull were computed by Gasser et al. (29). These
authors obtained average gain functions that they found to be
of practical use in correcting EOG artifacts. In other studies, a
frequency domain approach to correcting EOG artifacts has
been proposed (30,31). Similarly, Jervis et al. (32) found that a
computerized correlation technique provides results superior
to analog techniques for removing eye movement artifacts.
Elbert et al. (33) also stressed that the best correction for these
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Figure 56.3 Block diagram of the EEG simulator; the � filter represents
a first-order active RC network; the �, �, and 	 filters are of second
order; potentiometers independently control the parameters f(2/r)
(which determine the resonance frequency f0), � (which determine the
bandwidth), and � (which determine the zero of the transfer function);
the power parameter is G. (Adapted from Zetterberg LH. Experience
with analysis and simulation of EEG signals with parametric description
of spectra. In: Kellaway P, Petersen I, eds. Automation of Clinical
Electroencephalography. New York, NY: Raven Press; 1973:161–201.)
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types of artifacts is obtained in the frequency domain, but indi-
cated that the correction procedure should be based on more
than one EOG derivation, and preferably on three. Fortgens
and de Bruin (34) also obtained good results using the method
of least squares based on four EOG derivations.

Other important physiologic artifacts are muscle potentials.
Here also it is important to note that electromyographic (EMG)
signals affect the EEG power spectrum not only at relatively
high frequencies (30 to 60 Hz) but also even down to 14 Hz
(35). Under normal conditions, there is very little EEG power at
the scalp in the 30- to 50-Hz band; if the power is significantly
large, however, one must suspect contamination with EMG sig-
nals. Gotman (6) proposed dealing with this problem by
 introducing a reduction factor with which the activity in the
beta band should be multiplied; this factor depends on the
spectral intensity integrated over the 30- to 50-Hz band. If this
is below 1.5 �V/Hz, the reduction factor is equal to unity; if the
activity is larger than 1.5 �V/Hz, the reduction factor decreased
linearly to 0.1 as the spectral activity increases up to 5.0 �V/Hz. 

An alternative way to deal with artifacts is that used by
Gevins et al. (36), who determined thresholds for head and
body movement artifacts (under 1 Hz), high-frequency arti-
facts mainly caused by EMG (34 to 50 Hz), and eye movements
(below 3 Hz in frontal derivations) based on a short segment
that includes those artifacts; thereafter, EEG epochs exceeding
the aforementioned thresholds were simply discarded (37).

The need to avoid the contamination with artifacts of rele-
vant EEG features is so pressing that this area of EEG signal
analysis has been, for decades, in constant evolution. Here we
briefly review the most relevant approaches.

Rather elaborate methods are based on decomposing a set of
EEG signals into components that should represent the artifact
and the EEG signals, respectively. One of these is the spatial filter-
ing approach (38,39). According to this method, the topography
of the artifact is first estimated on the basis of a specific record-
ing where the artifact is clearly evident, since this is, in general,
easier to model than the EEG. Thus, the artifact can be described
as the product of the corresponding topography vector and time
waveforms. This can be then subtracted from the EEG signals
contaminated with artifact to yield the corrected signals.

Other methods have been proposed that differ in the way of
separating EEG and artifact signals. With this objective
Lagerlund et al. (40) used principal component analysis (PCA),
but this method has the drawback that PCA yields uncorrelated
components while the EEG signals and the artifacts may be cor-
related. An important step forward in this context has been the
introduction of independent component analysis (ICA) (see
Chapter 54) that is very effective in separating EEG signals from
artifacts as shown in a number of applications (41–44). The
application of ICA, however, needs some form of postprocess-
ing to identify the components corresponding to the EEG sig-
nals and to the artifacts. Several strategies and combinations of
approaches particularly with respect to their practical imple-
mentation are discussed by Ille et al. (38) and by Makeig et al.
(42). Particularly useful is the software package developed by
Makeig’s group (45,46) that they called EEGLAB. This is an
interactive Matlab toolbox for processing continuous and
event-related EEG, magnetoencephalogram (MEG), and other

electrophysiologic data using ICA, time/frequency analysis, and
other methods including artifact rejection, as indicated below.

Transient Nonstationarities: Epileptiform Events
The detection of epileptiform events is a typical example of the
application of a pattern recognition approach in EEG analysis.
In this case, the epileptiform events (spikes, sharp waves, and
spike-and-waves) are considered to constitute the “signal,”
whereas the background activity constitutes the “noise.” The
difficulty here lies in defining the epileptiform transients, that
is, the “signals” that one wants to identify. In 1949, Jasper and
Kershman (47) classified these events into spikes (duration 10 to
50 milliseconds) and sharp waves (duration 50 to 500 millisec-
onds). The Terminology Committee of the International
Federation of EEG Societies defined spikes as waves with a
duration of 1/12 second (83 milliseconds) or less, and sharp
waves as waves with a duration of more than 1/12 second and
less than 1/5 second (200 milliseconds) (48). Later, this
Federation Committee gave somewhat different duration limits
for these phenomena, with spikes having a duration from 20 to
under 70 milliseconds and sharp waves having a duration of 70
to 200 milliseconds (49). A few other characteristics have been
identified. Spikes and sharp waves should be clearly distin-
guishable from background activity and have a pointed peak;
their main component should be generally negative relative to
other scalp areas, and their amplitude variable. A distinction
between spikes and sharp waves has descriptive value only. The
parameter characteristics of spikes found in the human EEG
have been studied by Celesia and Chen (50).

One problem is the difficulty of defining a learning set that
may be unambiguous. A pioneering investigation in this respect
was carried out by Gose et al. (51); this study revealed consider-
able intra- and interrater variability. In practical terms several
methods have been used to identify the epileptiform events by
increasing the signal-to-noise ratio. Most of them are akin to the
classic approach of Carrie (52), who used as a criterion the ratio
between the amplitude of the second derivative of the EEG signal
and the moving average of similar measurements from a number
of preceding and consecutive waves; a ratio of 4 or 5 was said to
indicate an epileptiform event. Most other relevant studies have
proposed similar types of measures (53–57). All these methods
involve a preprocessing stage that constitutes a form of high-pass
filtering (e.g., computing the signal’s second derivative).

The method used by Lopes da Silva et al. (58–62) is based on
an essentially more general form of preprocessing. In this
method, an EEG epoch is described by way of an AR model that
provides the best fit to the background activity. The basic oper-
ation to improve the signal-to-noise ratio consists of passing the
EEG signal through the inverse filter of this estimated AR model;
this inverse filtering operation yields a new signal that ideally
should have the properties of uncorrelated white noise. The sta-
tistical properties of this new signal are then determined; devia-
tion of the new signal resulting from inverse filtering from a
normal distribution at a certain probability level is thought to
identify a transient nonstationarity (see Fig. 54.14). The essential
feature of this method is that inverse filtering of the EEG epoch
eliminates in an optimal way the background activity, allowing
the transient nonstationarities to emerge clearly.
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Not all transient nonstationarities, however, are necessarily
epileptiform events; some may be physiologic artifacts or other
kinds of EEG transients (e.g., lambda waves or sharp bursts of
alpha waves). After detecting transient nonstationarities, one
must apply a form of pattern recognition to select those that can
be accepted as being epileptiform in nature. This constitutes the
“two-stage analysis approach” proposed by Guedes de Oliveira
and Lopes da Silva (63) and Guedes de Oliveira and Lopes da
Silva (64). Two main pattern recognition methods have been
proposed; one is based on a matched filtering approach and the
other on piecewise characterization of the transient. Matched
filtering using as template a spike-and-wave pattern has been
used (65) to detect epileptiform transients even without prepro-
cessing. Barlow and Dubinsky (66) used a comparable method,
computing the running correlation coefficient between the EEG
signal and a template (see Fig. 54.15). However, the variability of
the waveforms characteristic of such transients presents a seri-
ous difficulty in dealing with this problem in practice.
Pfurtscheller and Fischer (67) combined a preprocessing stage
using inverse autoregressive filtering and a template matching
stage for postselection of relevant epileptiform events. An alter-
native method is to apply a piecewise analysis to the transient
nonstationarities, to identify those that belong to the epilepti-
form class. Smith (68) and Ktonas and Smith (69) proposed
such a piecewise analysis method based on five features
(Fig. 56.4): S1 and S2, the maximum slopes, respectively, before
and after reaching the peak of the spike; S3, the time taken by the
spike to reach the peak after it attains maximum slope; and S4,
the time taken by the spike to reach maximum slope after the
peak. The sum (S3 
 S4) of the time intervals corresponds to the
duration of the epileptiform spike (S5). The interval between
two consecutive zero crossings of the same polarity of the first
derivative (S6) is also a relevant feature.

Frost (70) considered the problem in a simpler form, pro-
posing the following characteristic features. Assuming that an
epileptiform spike is a triangular wave with a point of origin M
at the base, an apex S, and a point of termination P, Frost
defined amplitude as the largest value of the segments MS or SP,
and duration as the interval MP. Furthermore, he used as a
measure of sharpness D, an estimate of the signal’s second
derivative. The initial processing step involves comparing the
value of D with a threshold, so that, whenever D is larger than
a certain value, a candidate spike is detected. Extracting the fea-
tures described here requires a relatively high rate of EEG sam-
pling—at least 200/sec.

The next section considers the practical implications of
these methods in assessing the EEGs of epileptiform patients.
According to the method of Gotman and Gloor (55), at the end
of an analysis session the computer displays all transients
detected, whether true or false. The distinction between these
two types is made off-line in an interactive way. This form of
analysis represents a considerable data reduction and provides
a reliable account of the main types of epileptiform transients
present in a given record.

The methods of analysis described in this section not only
are useful in detecting the presence of epileptiform events, but
also provide quantitative information on the morphology of
such events, on their distribution over long periods of time, and

on their spatial distribution. Using this methodology, Ktonas
and Smith (69), Lopes da Silva et al. (1978), and Gotman (71)
observed that most epileptiform spikes, at the scalp, present a
second slope that is steeper than the first, contrary to the qual-
itative description of Gloor (72). However, Lemieux and Blume
(73) found that the spikes recorded directly from the cortex
presented a first slope that was equal or steeper than the second.
Another interesting analysis that can be realized using these
methods consists of the quantification of the distribution of
epileptiform spikes in relation to the occurrence of seizures.
Gotman and Marciani (74) found that the level of spiking is not
related to the probability of seizure occurrence, but they
reported an increase in spiking in the days following seizures.

Very much as in the case of the detection of artifacts, the
analysis of epileptiform events has attracted the interest of
many researchers and new approaches are often being intro-
duced. In most cases, new methods are published without a
comprehensive comparison with older methods, which make it
difficult to evaluate the performance of new approaches with
respect to previous ones. An interesting exception is the study
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Figure 56.4 Top: An epileptiform spike; bottom: the corresponding
first derivative. The parameters proposed by Ktonas and Smith (69) are
shown: S1 and S2, the maximal spike slopes, respectively, before and
after reaching the peak; S3, the time taken by the spike to reach the
peak after it attained maximal slope; S4, the time taken by the spike to
reach maximal slope after the peak. The sum S3 = S3 
 S4 is a meas-
ure of the duration of the sharp part of the peak. The time interval
between two zero crossings of the same polarity of the first derivative
is S6. The time duration of the signal shown is 1 second. (Adapted from
Lopes da Silva FH. Analysis of EEG nonstationarities. Electro -
encephalogr Clin Neurophysiol Suppl. 1978;34:163–179.)
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of Dumpelmann and Elger (75), which we discuss in detail
below (see the section “CADS and Epileptiform Events”).

Very often several categories of spikes can be distinguished in
the EEG or MEG of patients with epilepsy that may differ con-
siderably in waveform and may even be associated with different
sources in the brain. Therefore, the population of spikes
recorded in a given patient should preferably be grouped into
distinct categories before being averaged. This is especially
 relevant if source reconstruction is going to be performed. This
implies that a form of clustering of spikes has to be carried out.
In the simplest case, this may be done by visual inspection by an
experienced electroencephalographer. Such an operation
becomes rather complex and time consuming if the number of
spikes and of channels in the EEG/MEG is quite large. This has
led to the development of computer algorithms to automate the
identification of clusters of spikes (76). We should add that if the
purpose of the analysis of epileptiform spikes includes the esti-
mation of the localization of the corresponding sources in the
brain, it is preferable to use MEG than EEG recordings because
solutions of the inverse problem are more accurate with MEG
(see also Chapter 5). One of these studies is that of Van’t Ent et
al. (77) who performed cluster analysis of MEG epileptiform
spikes, grouping spikes according to the similarity between mag-
netic field characteristics. Thereafter, the spikes within one clus-
ter are averaged to improve the signal-to-noise ratio such that
the quality of equivalent dipole source estimates is enhanced.
Similarly Abraham-Fuchs et al. (78) showed that averaging of
similar spike events, recorded in the MEG, substantially
improves the signal-to-noise ratio (a more general discussion of
clustering algorithms is presented in the next section).

Classification and Clustering in EEG Analysis
The previous section considers different ways to find sets of fea-
tures that can characterize EEG signals. In this section, we con-
sider very briefly the next phase in pattern recognition,
classification and/or clustering. For a detailed account of this
problem, the reader is referred to Duda and Hart (1) as indi-
cated above. It is necessary to consider this question here in
order to be able to evaluate quantitative EEG analysis methods
in the clinical laboratory. The essential problem is one of diag-
nosis; given a set of EEG epochs that have been analyzed and
characterized by a number of features, it is necessary to deter-
mine what is the performance of the algorithm regarding the
classification of the EEG epochs in a given number of diagnos-
tic categories (e.g., normal/abnormal, sleep stages) or to label
EEG transients (e.g., spikes) as epileptiform.

One way to solve this problem is to use discriminant analy-
sis, which is possible only if one knows a priori that the EEG sig-
nals belong to a defined number of classes. Assuming that the
analysis involves classifying EEG signals into two classes, nor-
mal and abnormal, and using a set of features, the feature vec-
tor defines a point in n-dimensional space.

In discriminant analysis, the space where all objects (e.g.,
EEG epochs characterized by a vector set) are contained must
be subdivided into a number of regions; the objects within a
region form one class. The functions that generate the surface
separating the regions are called discriminant functions. An

object is assigned to a certain region or class by several types of
decision rules; these are described in detail by Demartini and
Vincent-Carrefour (4), among others.

To develop and test a classifier, it is important to dispose of a
sufficiently large learning set (i.e., a set of N objects that have been
classified a priori using independent criteria); in the case of EEG
analysis, the independent criteria ought to be clinically valid. This
implies that the objects must be classified by expert raters (elec-
troencephalographers) using generally accepted criteria, possibly
based on visual inspection, and making use of all relevant clinical
information. The learning set should contain a sufficient number
of objects (4). One way to develop an automatic method of EEG
analysis is to divide the experimental set into two parts. Thus, the
first part (learning set) is used to develop the classifier and the sec-
ond to test its performance (test set). A useful alternative if the
experimental set is too small is the “hold-one-out” strategy, which
involves removing one object from the learning set and then resyn-
thesizing the classifier and trying to recognize the selected object.
This operation should be repeated for each object. The resulting
error rate is a good estimate of the classifier’s performance.

The quality of the learning set is of primary importance. To
start with, it is necessary to have knowledge about rater repro-
ducibility (intrarater agreement) and validity (interrater agree-
ment) as regards evaluation of the EEG records constituting the
learning set. A few studies have addressed electroencephalogra-
phers’ overall classification of EEG records as normal or abnor-
mal; in such cases, the validity of the visual assessment is usually
about 80% to 90%. Although most raters generally agree on the
division of the EEG into two classes globally (normal or abnor-
mal), classification of short segments or of epileptiform tran-
sients is much less consistent. The same applies to intrarater
agreement. In the assessment of EEG patterns corresponding to
different sleep stages, however, a good degree of interrater
agreement can be expected; thus, it is not surprising that meth-
ods of automatically classifying sleep stages have been those
more often evaluated in a quantitative way. In assessing epilep-
tiform events (spikes, sharp waves, spikes-and-waves), a large
degree of interrater variability is also encountered. Gose et al.
(51) found considerable variability in the human detection of
spikes; a total of 948 events were marked as spikes by one or
more electroencephalographers, but only 104 events were
marked by five raters. However, disagreement between raters on
individual spikes is not very important; a comparison on a
patient basis (30 records seen by five raters) is more important;
seen from this viewpoint, the average error rate was only 4%.

For the classification of EEG records in the learning set, it is
important to utilize a structural report such as used by Volavka et al.
(79), Rose et al. (80), Gotman et al. (81), Gotman and Gloor (55),
and Gevins (82). In other words, EEG classes should be defined
unambiguously; the abnormal EEG can be classified as paroxysmal
or irritative, hypofunctional (cortical or centrencephalic) or mixed;
the location of the abnormality (focal: frontal, temporal, central,
occipital, lateralized, or diffuse) should also be specified.
Furthermore, one may use a complementary second-order classifi-
cation into diagnostic types related to the global medical diagnosis:
space-occupying lesions, metabolic disorders, cerebrovascular
insufficiency, seizure disorders, or psychiatric disorders.
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EEG SEGMENTATION AND CLUSTERING

We should emphasize that EEG records are generally nonsta-
tionary. Although in the clinical laboratory it is usually possible
to obtain representative EEG epochs by tightly controlling the
subject’s behavioral state, it is often desirable to distinguish in
an EEG signal segment, characterized by different properties,
that can be separated automatically. This is particularly impor-
tant in the case of EEGs recorded under intensive care condi-
tions, such as during anesthesia, or in other long-duration
records. Ideally equivalent segments thereafter could be
grouped together, thus defining a number of classes. An early
effort in this direction was made by Bodenstein and Praetorius
(83), who proposed a general method of EEG segmentation;
they assumed that an EEG should be considered as a sequence
of quasi-stationary segments of varying duration. They used an
AR model as described in Chapter 54. 

By setting appropriate thresholds, Bodenstein and Praetorius
(83) have been able to formulate explicit criteria for EEG seg-
mentation. The problem, however, is that the validity of this seg-
mentation procedure in relation to clinically clearly defined
states is difficult to demonstrate. Jansen (25) made an interest-
ing effort along a similar line by using an algorithm akin to that
discussed above but based on a Kalman filter and following a
different strategy; this method is called Kalman–Bucy (KB) clus-
tering. Defining segments of variable length based on statistical
criteria proved to be too difficult because a good learning set
could not be constructed. An alternative method followed by
Jansen (25) was to divide the EEG into a large number of seg-
ments with a fixed duration of 1.28 seconds each, and classified
them using an unsupervised learning clustering approach. In
other words, he used a clustering algorithm to group segments
with similar properties into a number of classes that were not
defined a priori. Each 1.28-second segment is characterized by a
feature vector consisting of the five coefficients of the correspon-
ding AR model estimated using a Kalman filter, often comple-
mented by a measure of amplitude. The statistical approach
used in this case is a form of clustering (see review in Ref. 84).
Clustering can be partitional or hierarchical; the former is based
on a priori knowledge of the place occupied by some objects,
which are then used as “seed points” around which clusters
grow. The latter can have two forms, agglomerative or divisive,
depending on whether one starts from an assembly of as many
clusters as objects or from one cluster encompassing all objects.
Jansen (25) used the agglomerative hierarchical clustering
approach to group EEG segments of a number of types. This
type of clustering involves an iterative process through which
the two most similar clusters of the previous step are merged
into a new cluster. The user can stop the process at any point,
depending on the application. Using statistical criteria, it is pos-
sible to delimit the number of classes in such a way that the dis-
tance between their centroids does not fall below a certain value.

Hierarchical clustering of epileptiform spike events has also
been used in the analysis of interictal EEGs. Guess and Wilson
(85) presented an application by means of which spike events
are separated into groups, based on topology and morphology,
which yields an efficient method of performing detailed

 analysis of long time series. Van’t Ent et al. (77) reported a spike
clustering analysis that yields meaningful results in neocortical
localization-related epilepsy, in MEG.

This type of analysis may be criticized similarly to the segmen-
tation method described earlier. Here also the number and types
of classes are arbitrary; an advantage of clustering methods, how-
ever, is their flexibility; the same data may be clustered in several
ways. This is feasible because all information necessary to charac-
terize the EEG segments is stored in the form of a small number
of coefficients (e.g., five coefficients of an AR model). Some appli-
cations of this method are discussed in the following section.

NEURAL NETWORK-BASED 
EEG CLASSIFICATION

Neural networks have been employed to classify EEG features.
Several research groups have successfully explored this
approach. This appears particularly interesting for the classifi-
cation of single-EEG epochs. Three types of neural
network–based classifications of EEG data were reported: clas-
sification of single-EEG trials for selective averaging (86); clas-
sification of averaged and nonaveraged multichannel EEG data;
and classification of single-trial, multichannel EEG data (87).
For these classifications, different types of neural networks were
applied. A back-propagation network was used by Gevins and
Morgan (86). Self-organizing feature maps followed by a learn-
ing vector quantizer (LVQ), both introduced by Kohonen (see
review, Ref. 88), were used by Pfurtscheller et al. (87). The lat-
ter authors used a neural network approach to analyze and clas-
sify nonaveraged multichannel EEG data from an experiment
where the subject had to press a microswitch with either the left
or right hand, whereby the side of movement was indicated by
a cue stimulus. On the basis of the spatiotemporal alpha event-
related desynchronization (ERD) prior to movement, this
method of automatic classification was able to predict the side
of the hand movement. One part of the data was used for train-
ing the neural network, the other part to test the performance
of the network as classifier. Peters et al. (89), using autoregres-
sive modeling of EEG time series and artificial neural networks
(ANNs), developed a classifier that can tell which movement is
performed based on information taken from a segment of the
EEG signal of a single trial. The classifier’s rate of recognition of
EEGs not seen before was 92% to 99% on the basis of a 1-sec-
ond segment per trial. Thus, the classifier was considered suit-
able for a so-called brain–computer interface, a system that
allows one to control a computer, or another device, by means
of EEG signals (see also Chapter 57).

SEGMENTATION AND CLASSIFICATION
IN SLEEP EEG ANALYSIS

Several attempts have been made to develop an automatic sleep
analyzer based on EEG records, in combination with EOG and
EMG or independently (see a review of classic studies by
Johnson (90)). The development of an automatic processor has
been preceded by a thorough quantitative study of the EEG
characteristics during different stages of sleep. These studies
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have been directed mainly to quantitative analysis of EEG sig-
nals recorded from C3-A1 and C4-A2, of EOGs recorded from
the outer canthus of each eye referenced to the ipsilateral mas-
toid, and of EMGs from the submental muscle (see also
Chapter 10). Three main characteristics of the sleep EEG have
been identified by computer analysis.

Sleep spindles have been shown (91) to range in frequency
from 12.4 to 14.6 Hz in young adults. Gondeck and Smith (92),
however, found that frequency can vary about 2 Hz between dif-
ferent spindles; spindle duration varies between 0.5 and 0.8 sec-
onds. Based on a model of the generation of sleep spindles, Kemp
et al. (93) have introduced an optimal detector for this type of
activity. Delta activity is the primary feature distinguishing wak-
ing and sleep stages; Johnson et al. (91) concluded that the most
consistent peak in the spectrum during different sleep stages lies
between 0.8 and 1.8 Hz. The delta activity increases between stage
1 (and rapid eye movement [REM]) and stages 2 to 4. With age,
delta activity decreases in amplitude but not in incidence (94). In
addition, a very slow oscillation, at 0.5 to 1 Hz, during sleep, was
described by Steriade et al. (95) in cats, which differs from delta
waves (see also Chapter 3). This very slow sleep oscillation was
recorded during natural sleep in the EEG (96) and MEG (97) in
humans. K complexes have been difficult to analyze automatically,
probably because of their large variability. Bremer et al. (98)
developed a hybrid pattern recognition method for detecting K
complexes. Rosa et al. (99) proposed a method for the automatic
detection of K complexes that yields good practical results. The
method of Rosa et al. is based on a simple model of the neuronal
network that is responsible for background EEG signals accord-
ing to the proposal of Kemp (100). In the model, the main path-
way is represented by a frequency-selective feedback loop. The
central frequency of the network depends on the time constants
of the neuronal elements in the network. Rosa et al. constructed
a model that represents the delta activity typical of slow-wave
sleep (SWS). The K complex is represented as the impulse
response of such a delta model.

This section discusses some of the attempts to analyze auto-
matically EEG signals in relation to sleep stages. The learning
sets have been classified according to visual inspection, usually
on the basis of criteria proposed by Dement and Kleitman (101)
and Rechtschaffen and Kales (102). Künkel (103) summarized
the results obtained by several investigators who used as the first
extraction procedure a form of spectral or hybrid frequency
analysis (104–106) or period analysis alone or combined with
analog filtering (107,108). The mean rate of correct recognition
of sleep stages varied for the different studies between 60% and
79%, depending largely on the visual classification method used
and on the learning set. Martin et al. (109) and Viglione and
Martin (110) reanalyzed this problem using a comprehensive
methodology; they used power spectra combined with a time-
domain technique to detect delta waves (period 0.55 seconds)
exceeding 75 �V amplitude, and two EOGs to detect horizontal
eye movements. Interval analysis of delta waves was necessary
because the power in the delta frequency band (0 to 2 Hz) was
shown not to be proportional to the number of delta waves
counted by human observers. EOG recordings were considered
necessary in order to help distinguish between REM and waking

states. These authors validated their automatic sleep analyzer on
sleep recordings of nine young subjects. Data from four subjects
were used as learning sets and those of the other five as test sets.
The sleep stages were classified visually by three human raters.
For the five subjects, the average agreement between raters
ranged from 85.8% to 91.4%; the agreement between the pro-
gram and raters ranged from 77.7% to 86.2% and the agreement
between the program and the consensus of raters (majority
decision) ranged from 78.8% to 86.4%. Using hybrid systems,
Smith and Karacan (106), Gaillard et al. (111), and Gaillard and
Tissot (112) reported similar figures. Poppl (113) used as the
first feature extraction method a time-domain amplitude and
interval analysis procedure, which allowed considerable data
reduction; by mapping the feature space to maximize the vari-
ance ratio between classes (in relation to the variance within
classes) and using linear discriminant analysis, a very good
(91%) recognition rate for a test run was obtained using the
hold-one-out strategy. Mathieu et al. (24) obtained EEG features
using an autoregressive model of order 9, fitted to a large num-
ber of 30-second epochs from five sleep EEG recordings of three
different subjects. They found for the three subjects a recogni-
tion rate of 81% in a test run; when applied to a single patient’s
EEG, the recognition rate was 91%. The lower recognition rate
obtained when using different subjects is a consequence of the
relatively large intersubject variability. Mathieu et al. pointed out
that grouping subjects by age classes might reduce variability. In
any case, the most difficult operation of the automatic classifier
was discriminating, on the one hand, between REM sleep and
wakefulness and, on the other, between sleep stages 3 and 4. This
would probably be facilitated if the AR model features had been
combined with EOG data and with a supplementary method of
detecting delta waves, as described above. This technique may be
improved still further by incorporating a more accurate detec-
tion of EOG data during REM. Regarding the distinction
between stages 3 and 4, the difficulty of the automatic methods
is shared by the human raters; thus, many observations combine
stages 3 and 4 into one stage called, simply, SWS. The usefulness
of computer analysis in sleep analysis is still unconfirmed; data
reduction is an obvious advantage, but the purpose of the effort
being carried out must be clearly defined. A possible interesting
application is in psychopharmacologic studies. Probabilistic
models describing the statistical properties of the hypnogram
(i.e., the transitions between stages and their duration) have
been developed (114–116). Kemp and Kamphuisen (117) intro-
duced a model combining probabilistic and deterministic
aspects of sleep. Such models, based on a Markow chain process,
may be useful for computerized analysis of hypnograms. An
account of several classic computerized methods of sleep analy-
sis has been published by Hermann and Kubicki (118). We
should note that sleep staging is a rather fuzzy process. Indeed it
is not an easy task to perform a computer-assisted analysis since
the standards are not well defined. This is a caveat that should be
taken into consideration. Most likely this is the reason why many
ingenious algorithms developed in the past decades have not
gained wide acceptance in practice. One general feature of these
algorithms is that they are rule-based, and in general their per-
formance depends very much on the learning population for
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which they were developed. When they are tested in other pop-
ulations and other laboratories, many problems arise. More
recently Agarwal and Gotman (119,120) attempted to solve
these limitations by developing an automatic sleep staging
method that is based on the use of evolving schemes that can be
adjusted depending on the type and quality of polysomno-
graphical recordings. This algorithm adapts the sleep staging
rules to the user preferences and the record being analyzed. A
method based on advanced adaptive time–frequency analysis
was developed by Malinowska et al. (121). This method uses
Gabor functions that provide optimal definition jointly of fre-
quency and time. This group pursued the development of auto-
matic parametric sleep staging and tested the performance of
the system in comparison with visual scoring of sleep stages by
experts. The automatic system showed agreement with visual
staging close to the interexpert concordance (122). Systems for
sleep staging in ambulatory conditions have also been developed
and tested (123) including EEG, EMG, and EOG signals; ICA
was applied. Compared to a standard sleep analysis system, this
system yields a concordance of 67.2%. Methods were also devel-
oped with the specific aim of assisting in the diagnosis of sleep
apnea syndrome but not including EEG recordings, which falls
outside the scope of this chapter. The fact that traditional sleep
staging involves a subjective evaluation of EEG and other physi-
ologic signals according to the classic Rechtschaffen and Kales
rules has led to discussing the possibility of substituting these
rules by an objective classification based on parameters
extracted using automatic signal analysis of sleep. This discus-
sion is spurred by the fact that there is considerable interrater
variability and the scoring process is time consuming and sub-
jective as discussed by Nieuwenhuijs (124). This discussion,
however, is still ongoing.

QUANTITATIVE EEG IN INTENSIVE
 MONITORING DURING SURGERY

Automatic intensive monitoring of the EEG is of great impor-
tance when the cerebral circulation is in acute danger, such as
during open heart or carotid surgery, in states of recovery or
worsening of cerebral function after brain damage, in coma, or
during hemodialysis. Monitoring of cerebral function during
extended anesthesia is also of interest. EEG changes during
anesthesia are well known (see review of early literature in Ref.
125); in this situation, a complex number of factors may affect
neuronal function, cerebral circulation, and the general
acid–base equilibrium in blood and tissues. Disturbances of
these physiologic functions are reflected in EEG changes.
Therefore, compressed spectral arrays (126) have been used in
monitoring these conditions. Because significant data reduc-
tion is desired in order to implement real-time EEG monitor-
ing at a reasonable cost, it is not surprising that systems have
been developed based on drastic simplification of the EEG sig-
nal, for example, in the cerebral function monitor (CFM) devel-
oped by Maynard (127), Prior (128), and Prior et al. (129).
Pronk (130) has published a review of computerized methods
in perioperative monitoring. More recently the digital

 techniques used in continuous EEG monitoring in the intensive
care unit were reviewed by Scheuer (131), including conditions
such as cerebral ischemia, acute severe head injury, and coma. It
is interesting to note that the main EEG frequency ranges that
represent ischemic changes in the brain, in a clinical setting,
were examined in detail by Visser et al. (132), who determined
EEG spectral changes as a function of time in the course of
brain ischemia caused by short periods of circulatory arrest
during surgery. After onset of circulatory arrest, the log spectral
changes of three-epoch moving averages were calculated rela-
tive to the baseline spectrum. Factor analysis was carried out; 17
EEG periods were selected that showed changes progressing to
an isoelectrical period. This analysis revealed four factors that
represented the spectral EEG changes occurring during circula-
tory arrest and recovery. The frequency intervals of these factors
were 0 to 0.5, 1.5 to 3, 7.5 to 9.5, and 15 to 20 Hz for all chan-
nels. The sequence of events was similar for all derivations. The
first EEG change after circulatory arrest was an initial increase
in alpha power and a decrease in beta power. On average, after
approximately 15 seconds alpha power started to decrease, beta
power decreased further, delta-1 power started to increase, and
delta-2 power started to decrease. After approximately 25 sec-
onds, the delta-1 power increase appeared to plateau or to
decrease. Thus, to detect intraoperative cerebral ischemia, mon-
itoring of changes in these four frequency ranges is preferable
to monitoring changes in the classically defined frequency
bands. Some special uses of EEG computer analysis in clinical
environments, with particular emphasis on long-term EEG
monitoring, are discussed in detail in Chapter 35, including
long-term monitoring in intensive care units during cerebral
ischemia and coma, but also during anesthesia in general, and
particularly when neuromuscular blockade is used.

Many departments of anesthesia investigated the possibility
of using a simplified index of EEG activity for this purpose.
Thus, a quantified EEG measure was sought to assist the anes-
thesiologist in interpreting the changes in EEG signals. EEG
power spectral analysis was explored; in particular the spectral
edge frequency and the median power frequency were EEG
parameters applied but were not found to be reliable in practice
(133). The search for EEG variables that are valid indices of
depth of anesthesia led to finding that EEG bispectra can yield
useful results. Bispectra quantify the nonlinear phase coupling
between various frequency components of the EEG signals as
presented in Chapter 54 (Expression 54.16 and Fig. 54.4).
Investigations of the behavior of EEG bispectra and other spec-
tral variables were performed using EEG signals recorded con-
tinuously from a bifrontal montage (FP1-Cz and FP2-Cz). EEG
parameters were correlated with the Observers’ Assessment of
Alertness/Sedation (OAA/S) scale (134). The bispectra pre-
sented the strongest correlation with OAA/S scores. With
increasing sedation a progressive decrease in the magnitude of
the bispectrum was found. The EEG bispectral magnitude was
found to be a reliable measure for several anesthetics (135,136).
Monitoring devices based on quantified EEG in this way
appeared in the 1990s. These devices entered the field of EEG
monitoring during anesthesia, such as the BIS monitor system
(137), but the results must be interpreted carefully taking into
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account the specific EEG of a patient, the anesthetic drugs, and
other coadjuvant drugs used (e.g., a baseline EEG recording
should always be made before administration of any drug).
Indeed a multicenter study of bispectral EEG analysis for mon-
itoring anesthetic effects has shown that BIS is a significant pre-
dictor of patient response to a surgery incision, but the utility
of the BIS depends on the anesthetic technique used (138).

One clinical situation where quantitative EEG monitoring
can be indicated is in those cases where barbiturates are used to
lower intracranial pressure or to control epileptic seizures that
may occur after traumatic brain injury and during convulsive
status epilepticus. It is not easy to control the desired doses of
barbiturate. Barbiturates are usually administered until EEG
burst suppression appears. Monitoring of barbiturate effects on
EEG is necessary to establish the lowest useful dose in real time.
A prospective study performed at a pediatric intensive care unit
(139), including children with barbiturate-induced coma after
traumatic brain injury or generalized convulsive status epilepti-
cus, showed that the BIS monitor can help to monitor barbitu-
rate-induced coma, but it should be used with caution.

Quantitative EEG, whether or not along with auditory
evoked potentials, should be considered in order to monitor
brain functions during a variety of surgical procedures, partic-
ularly with respect to cardiac surgery with cardiopulmonary
bypass and hypothermic circulatory arrest to detect awareness
and indirect memory function, as well as to assess the adequacy
of anesthesia (140).

COMPUTER-ASSISTED DIAGNOSTIC SYSTEM

For descriptive reasons it is useful to distinguish two types of
computer-assisted diagnostic systems (CADS), because they are
based on rather different designs. One pertains to the diagnosis
of what might be called hypofunctional states of brain function,
commonly characterized by some slowing of the dominant
EEG frequency components or the appearance of extra-slow
components; the other pertains to the diagnosis of so-called
irritative states or different manifestations of epilepsy.

CADS and Hypofunctional States
Most systems currently used in clinical laboratories include
subroutines designed to detect and evaluate hypofunctional
states. In this field, several systems combine a high degree of
sophistication with considerable clinical practicality and
include comprehensive data reduction and specific displays
for clinician’s use. Thanks to the increased availability of rela-
tively simple computer systems, many dedicated CADS algo-
rithms were developed in the 1970s, such as those of
Matousek et al. (141,142), Friberg (143), Friberg et al. (10),
Gotman (6,144), Gotman et al. (9,81), Gevins et al. (145),
Künkel and EEG Project Group (146), Storm van Leeuwen et
al. (147), Mauslby et al. (148), McGillivray and Wadbrook
(149), Binnie et al. (150), Harner and Ostergren (151), Ebe et
al. (152), and Bickford et al. (153). The practical success of the
available systems depends not only on the exact method of
EEG analysis, but also on (i) the system’s capacity to avoid
and/or eliminate artifacts, (ii) the degree of data reduction

possible without  distortion of information, (iii) the graphical
potential to convey adequate communication to the user, and
(iv) operating ease and flexibility. In this respect, it is of para-
mount importance that the CADS allows interactive opera-
tion, in order to avoid an overflow of information and thus
speed up the computations. At the same time, it should enable
users to adopt their own strategies of selecting analytic facili-
ties to give information on the most interesting features in a
particular EEG. Because a generally accepted CADS does not
yet exist, only a few indications of the most relevant points
that one should take into consideration when implementing
such a system in the clinical laboratory will be given here. To
evaluate the basic method of EEG analysis and the possible
degree of data reduction, a comparative statistical study of dif-
ferent EEG analysis techniques, available at the time, has been
carried out in the same database (142). The database, how-
ever, was limited; it consisted of 57 EEG records obtained
from patients with renal insufficiency (2), hepatic coma (5),
brain injury (3), and patients without organic disease, but
under psychotropic treatment (3); moreover, only EEGs
recorded from derivation T3-T5 were analyzed. The EEG
records were visually assessed by two independent raters; a
structured report was used. The EEG records were sampled at
204.8 Hz. The correlation between a number of EEG features
and the visually assessed degree of abnormality was computed
and the following features were extracted: the RMS value as
indicator of mean amplitude; mean frequency number of
delta and theta waves calculated using zero-crossing interval
analysis; power content in the delta and theta frequency bands
calculated using fast Fourier transform (FFT) and the subdi-
vision of frequency bands indicated in Table 56.1 (5); power
content in the delta and theta frequency bands as percentage
of total power; the ratio between power in the theta and alpha
bands (theta/alpha); the ratio between power in the delta plus
theta bands and that in the alpha plus beta bands (Power[delta

 theta/alpha 
 beta]); and the so-called EEG age quotient
(5) mentioned previously. All measures defined in terms of
power were recomputed in terms of amplitude because ampli-
tude is the unit used when employing analog frequency analy-
sis. A few conclusions can be drawn from this early study.
Time-domain features give, in general terms, worse results
than features obtained using spectral analysis; the two most
revealing features that emerged from this study were the rela-
tive power in “delta plus theta band” (normalized to total
power) and the EEG age quotient. Friberg et al. (10) contin-
ued this research line, using mainly the so-called ratio of EEG
normality, mentioned earlier, in order to obtain an automatic
EEG assessment in a wider group of subjects. The overall
agreement rate between automatic and visual EEG interpreta-
tion in several groups of patients was about 80%. Two types of
EEG were difficult to classify: those with an alpha activity of 7
to 8 Hz, which the program tended to classify as abnormal
(contrary to the visual assessment), and those with very low
amplitudes. In terms of both informative display and interac-
tive operation, the most attractive system proposed at about
the same time is that of Gotman et al. (9,55,81). A typical out-
put of the original system is shown in Figure 56.2. The
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 striking advantages of this form of display are the comprehen-
sive presentation of topographical information and the degree
of information compression achieved. Furthermore, it is pos-
sible to obtain, using such a system in an interactive way, other
outputs of spectral analysis, such as plots of spectra of the
EEG channels, plots of coherence and phase functions, as well
as an output indicative of the variability of the four main fre-
quency bands. Many of these early basic systems became more
sophisticated in the course of time. The relevance of EEG fea-
tures giving information about changes in symmetry in CADS
dedicated to hypofunctional states should be stressed. In this
context, a study carried out in order to investigate clinical rel-
evance of quantitative EEG parameters in ischemic cere-
brovascular disease should be mentioned. Sheorajpanday et al.
(154) studied EEGs of patients suffering from subacute
ischemic cerebrovascular disease. They used a pairwise
derived brain symmetry index (pdBSI) as important EEG fea-
ture for this analysis and determined correlations between
EEG parameters, clinical status, and volume of ischemia on
diffusion-weighted imaging (DWI). The main conclusion was
that pdBSI could reliably discriminate between stroke and
TIA patients or control subjects, and correlated significantly
with clinical and radiologic status.

CADS and Epileptiform Events
In contrast to the systems used to analyze EEG patterns in
hypofunctional states, those that have been derived for auto-
matic recognition and display of epileptiform events have
received a good deal of attention in the past decade. Major
interest with respect to these systems is in laboratories directly
involved in the diagnosis and care of a population of epileptic
patients, particularly in those locations where extensive EEG
investigations using intracranial electrodes are performed as a
guide for neurosurgery and where routine long-term EEG
recording is carried out in combination with the determination
of plasma levels of antiepileptic drugs. In the section “Transient
Nonstationarities: Epileptiform Events,” we discussed already
the main features characteristic of these transients and the
problem of finding a consensus among raters about the identi-
fication of such transients by visual inspection; here we con-
sider this issue at the more general level of the
computer-assisted systems (CADS) dedicated to the diagnosis
in epilepsy. CADS in epilepsy may have different objectives,
such as detecting interictal epileptiform transients, detecting
epileptic seizures, or localizing an epileptogenic area in the brain.
In the last decade the development of methods that may permit
the automatic anticipation of epileptic seizures generated wide
interest (this specialized issue is presented in Chapter 30).

The principal aims of developing CADS for detecting inter-
ictal epileptiform transients are to quantify long-term variations
in transient occurrence rates, especially in relation to
antiepileptic drug therapy, and to determine the topographical
distribution of such events. The basic methodologies used have
been described in Chapter 54. The criteria mentioned above are
imprecise and open to subjective interpretation. Nevertheless,
experience has shown that they have pragmatic value.
Furthermore, it is also important to consider the problem of

rejecting artifacts that may have characteristics similar to
epileptiform transients, such as EMG, lambda waves, vertex
waves, or K complexes in sleep, and positive occipital sharp
transients.

Taking into consideration the above discussion, it seems
desirable to develop CADS in which users can choose whether
they want to have detected those events classified with a high
probability by a consensus of electroencephalographers as
epileptiform or all events that any electroencephalographer
would accept as epileptiform (64,155). The strategic choice
would depend on the clinical setting in which the analysis takes
place. For instance, in routine clinical EEGs, one would proba-
bly prefer a stringent criterion in order to minimize the chance
of false positives, whereas the investigator monitoring long EEG
and plasma levels of antiepileptic drugs in known epileptic
patients might be inclined to follow less stringent criteria. The
rule-based algorithms developed by Gotman (156,157) and col-
laborators (158,159), and implemented in software packages,
have practical value, especially when the objective is to detect
epileptiform transients in long EEG recordings, such as during
a whole night (see Chapter 35 for details of long-term monitor-
ing). In this respect, the fact that the performance of these algo-
rithms takes into account the well-known influence of the state
of the ongoing EEG, namely of sleep stages on the occurrence
of epileptiform events, is particularly valuable. In general, these
automatic methods yield a relatively large number of false pos-
itives, and thus it is always necessary to perform a secondary
visual reevaluation of the detected events. Nevertheless, this
automatic CADS achieves a very comprehensive data reduction.
Other algorithms have been proposed that may yield smaller
rates of false positives (155,160–163). A practical conclusion of
such studies is that visually corrected (a posteriori) automatic
analysis of epileptiform events is a cost-effective procedure for
the presurgical evaluation of epileptic patients associated with
video-EEG monitoring (164).

No matter which detection method is chosen, it is always
necessary to provide a comprehensive display of the results so
that topographical interpretation may be made, particularly
with regard to the existence of an irritative area.

To validate the clinical relevance of CADS, it is important to
compare different methods according to a comprehensive pro-
tocol. Such a study was carried out by Dumpelmann and Elger
(75), who reported the results of a comparison of the perform-
ance of two specialist reviewers and of three spike-detection
approaches with respect to the detection of epileptiform spikes
in intracranial recordings from subdural and intrahippocampal
depth electrodes in seven patients. The systems analyzed were
(i) the “rule-based system” of Gotman’s group, (ii) the “two-
stage system” consisting of an inverse autoregressive filter and a
second rule-based stage of Lopes da Silva’s group (64), and (iii)
a “wavelet detector” using wavelet coefficients of the intracra-
nial EEG (iEEG) data developed by the authors. The results are
quite revealing: the agreement between the two human review-
ers with respect to spike identification was less than 50%. The
automatic systems achieved agreements of 24% (“rule-based
system”), 26% (“wavelet detector”), and 32% (“two-stage sys-
tem”) with the individual human reviewers. In spite of the small
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proportion of agreements, the same anatomical regions were
identified by human and automatic EEG analysis as generators
for the majority of spikes. This led the authors to conclude that
the poor agreement between the human EEG reviewers suggests
that the definition of spikes and spike-like episodes in intracra-
nial electrodes is far from unequivocal, although the localizing
information is highly consistent by either visual or automatic
spike detection, independent of the algorithm used for auto-
matic spike detection. These conclusions are not really surpris-
ing since in our experience (64) there is considerable variability
in how experienced reviewers score epileptiform transients,
while the performance of the automatic methods described
above does not differ appreciably from a consensus of a panel
of eight reviewers. Wilson et al. (165) made a larger reliability
study of the performance of human experts in detecting epilep-
tiform spikes and concluded that the average interrater correla-
tion was 0.79. These authors proposed that this database could
serve as a “gold standard” for testing computer algorithms or
other readers. The same group (166) developed later a neural
network approach that performed automatic grouping of
spikes via hierarchical clustering (using topology and morphol-
ogy), the performance of which was close to that of human
experts. Appropriately noting that in spite of the many algo-
rithms that have been developed in the past decades dedicated
to the detection of epileptiform spikes, an ideal system contin-
ues to be illusive, Harner (167) proposes a spike/nonspike data-
base as a tool for assessing parameters and methods for
automatic epileptiform spike detection that is available from
the author.

Since the advent of the MEG, it has been assumed that this
new methodology would be useful for the localization of epilep-
tiform events (168). The early literature has been reviewed by
Sutherling and Barth (169), Ricci (170), and Engel and Ojeman
(171). In the 1990s, the development of large arrays of sensors
for MEG recordings combined with advanced realistic models
of the brain and surrounding tissues based on magnetic reso-
nance imaging (MRI) scans has led to a number of interesting
investigations with the aim of improving spike source localiza-
tion (172–182). A conclusion that can be derived from these
and similar studies is that the localization of epileptiform
sources based on MEG data, especially if combined with EEG
data, using realistic models of the head based on MRI scans, can
provide valuable diagnostic information of particular interest
in the evaluation of candidates for epilepsy surgery. The inves-
tigation of Van’t Ent et al. (77), introduced above with respect
to clustering methodologies, is an example; after clustering
epileptiform spikes the spikes within one cluster were averaged
and the underlying sources were estimated using a single equiv-
alent current dipole model (see Fig. 5.4). A dipole was esti-
mated at each time sample during the same time window as
used in the clustering procedure. For the forward computa-
tions, a segmentation of the brain from MRI of each subject was
used as volume conductor. Dipole solutions were accepted only
when the residual error was less than 10%. The MEG data were
transformed to the MRI coordinate system by matching fiducial
markers. The estimated dipole locations are presented on MRI,
as shown in Figure 56.5. Some of these clusters are very close to

the lesion visualized in the MRI. In an interesting study a com-
parison between the performance of MEG and EEG recordings
of epileptiform spikes was performed using intracranial EEG
recordings as reference. Tanaka et al. (183) investigated the
accuracy of spatiotemporal source analysis of MEG and scalp
EEG with respect to the propagation of frontotemporal spikes
in patients with partial epilepsy, using a cortically constrained
minimum norm estimate. Furthermore, iEEGs were recorded
from temporal and frontal lobes in the context of presurgical
evaluation. These authors concluded that the spatiotemporal
analysis of MEG spikes models the time course of frontotempo-
ral spikes as observed on iEEG more adequately than the EEG.

In clinical practice epileptiform spike detectors are currently
used in digital acquisition software applied on-line. Although
these methods may differ in detail, they all derive from the
results obtained in the previous studies described above (for
review see Ref. 184). In general terms they are based on the
identification of the features described above, namely sharp-
ness, duration, slopes, and relative amplitudes. Furthermore, a
measure of EEG background state is very important since
detection is always a process of extracting a signal (the spike)
from the background, and the changes of the latter necessarily
affect the performance of the detector, as shown by Gotman
and Wang (159). In addition, information about the distribu-
tion in space of the detected events is commonly used
(63,77,184–186). As pointed out by Flanagan et al. (185), the
computation of equivalent dipole models, using appropriate
detection and preprocessing methods, as indicated above, pro-
vides a spatial parameter for each detected epileptiform event,
and this may constitute valuable information that may be read-
ily combined with MRI and other relevant data, for the clinical
assessment of a patient. A critical review of spike-detection
methods in scalp EEG has recently been published by Halford
(187).

A new development in this area of endeavor is the explo-
ration of the possibilities offered by the combination of EEG
and functional MRI (fMRI) recordings (188) in search for ways
of improving the localization of sources of epileptiform events.
Al-Asmi et al. (189) studied patients with focal epilepsy and fre-
quent spikes who were subjected to spike-triggered or continu-
ous fMRI with simultaneous EEG. The activated regions in
fMRI were concordant with EEG localization in almost all stud-
ies and confirmed by intracerebral EEG in some patients. Bursts
of spikes were more likely to generate an fMRI response than
were isolated spikes. The authors concluded that combining
EEG and fMRI in focal epilepsy yields regions of activation that
are presumably the source of spiking activity. These regions are
highly linked with epileptic foci and epileptogenic lesions in a
significant number of patients. This research area is most
promising since the quality of simultaneously recording of EEG
and fMRI in epileptic patients is becoming practically reliable
(190).

Automatic detection of seizures presents another kind of
problems, as discussed in more detail in Chapter 35. In the ini-
tial phase of computer-assisted detection of seizures, the recog-
nition of petit mal absences characterized by 3/sec
spike-and-wave complexes was one main area of investigation.
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This is understandable considering that these seizures are rela-
tively simple to detect in the EEG, while they are of clinical
interest in order to investigate correlations between such phe-
nomena and behavior. The technique proposed by Ehrenburg
and Penry (191) was designed to recognize generalized spike-
and-wave patterns whose main component, the absence spike,
should be detected by way of a procedure based on zero-cross-
ing analysis. The EEG records were classified visually by three
raters; the consensus of all three was employed as a criterion for
assigning the program’s correct responses. In a test population
of 12 patients, the program agreed with the consensus in 85%
of the cases, and it had 1% overrecognitions, which correspond
to “false positives.” The program’s agreement with the consen-
sus improved to 92% when all sleep sections were eliminated
from the analyzed EEG. This particularly well-designed study
led the authors to conclude that clinical applications of this
CADS will lead to reduced costs over visual EEG assessment.
Other CADS with the same main objective as the one described
above have been developed (52,70,192,193). The advantages of

this type of CADS in petit mal epilepsy are already widely
appreciated by researchers interested in quantitative clinical
studies.

Quite another sort of problem is the automatic recognition
of other types of epileptic seizures, mainly of partial complex
seizures characteristic of temporal lobe epilepsy. The interest in
automatic detection of this type of seizures stems from the fact
that the central objective of EEG in epilepsy is recording an
electroclinical seizure. In the early phases of computer-assisted
diagnosis in epilepsy, technical and computer facilities enabled
recording EEG continuously for further off-line analysis
(194,195). Babb et al. (196) proposed an analog device with the
objective of performing automatic seizure detection, based on
the recognition of high-frequency activity occurring over sev-
eral seconds. In this system, false alarms were quite frequent
(30%). Currently, there is software available for the detection of
seizures in clinical settings that provides reliable results,
although it is not perfect. In a few laboratories these systems are
being used in combination with methods of stimulation to
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Figure 56.5 Characterization of epileptogenic networks in the temporal lobe during the transition from pre-
ictal to seizure activity. A: Intracerebral EEG recoding performed in a patient with mesial TLE. B: Color-coded
nonlinear correlation matrices obtained from the pairwise computation of nonlinear correlation coefficient h2

over six different 10-second intervals chosen during the preictal period (1,2), the ictal period (3 to 5), and
after seizure termination (6). C: Graphical representation in which the lines indicate “abnormally strong” cou-
plings between the two considered structures (graph nodes). Only significantly high interdependencies are
represented (i.e., h2 values greater than 0.32; this value corresponds to the average h2 value computed over
the interictal period C2 standard deviations). Line thickness is proportional to h2 values. (Adapted from
Wendling F, Bartolomei F, Senhadji L. Spatial analysis of intracerebral electroencephalographic signals in the
time and frequency domain: identification of epileptognic networks in partial epilepsy. Phil Trans R Soc A.
2009;367:297–316.) (See color insert)
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influence the development of seizures. Peters et al. (197)
described an integrated bedside system for real-time seizure
detection and automated delivery of electrical stimulation
directly to the brains of subjects undergoing invasive epilepsy
surgery evaluation. These authors conclude that this network
system is proof of the concept of a portable or implantable
device that could serve identical functions. Viglione et al. (198)
and Viglione (199) attempted earlier to develop miniature
automatic seizure recognition and warning systems that could
be carried by patients; this system was successful in some cases
but led to too many false alarms.

A related question is how to estimate the localization of an
epileptogenic area, that is, where within the brain epileptic
seizures originate. There have been some efforts to localize pos-
sible sources of seizures on the basis of scalp recordings, and
using dipole fitting methods, however, with much difficulty
(200). This is not surprising since it is not likely that the neu-
ronal networks involved in the initiation of an epileptic seizure
may be anatomically restricted to an area that might corre-
spond to a discrete dipolar configuration. Nevertheless, this was
attempted by Kobayashi et al. (201), who developed a noninva-
sive method of analysis to localize the source and visualize the
time course of seizures, and to provide the location and orien-
tation of the equivalent dipole generating this activity. This
method was applied to scalp seizures in three patients with tem-
poral lobe epilepsy and single-focus seizures confirmed by
intracerebral recordings. A realistic head model based on MRI
was used for computation of field distributions. When seizure
activity was still not visually identifiable on the scalp, the
method demonstrated in all scalp seizures a source in the tem-
poral neocortex corresponding to the region of seizure activity
in intracerebral recordings. More experience with this kind of
methodology is needed to validate this approach. More recent
and elaborated methods aiming at providing an automatic
warning system for epileptic seizures using intracerebral elec-
trodes (202) and at the detection of the onset of seizures in
scalp recordings (203) have been developed and are being used
in clinical practice (see Chapter 35 for details).

The problem of detecting seizures has been also approached
applying ANNs providing an interesting way to seizure detec-
tion (163,204). The study of Wilson et al. (205) is particularly
interesting because these authors applied the “Reveal algo-
rithm” to the detection of a large number of seizures from 426
epilepsy patients combining three methods, novel in their
application to seizure detection: matching pursuit, small neural
network rules, and a new connected object hierarchical cluster-
ing algorithm. They found a sensitivity of 76% with a false-pos-
itive rate of 0.11/h, what was a better performance than of other
comparable methods.

The objective of localizing an epileptogenic area, or better an
epileptogenic network, is particularly important in patients with
complex partial seizures resistant to pharmacologic therapy
who are candidates for temporal lobectomy. On the basis of
iEEG recordings, useful results have been obtained by comput-
ing time relations between EEG signals recorded from different
sites. In this respect, the pioneer work of Brazier (206,207) was
particularly influential. She computed cross-power spectra

(coherence and phase) between EEG seizure records from differ-
ent derivations. By determining the phase (� in degrees)
between pairs of derivations at a frequency (f in Hz) with pro-
nounced coherence, estimated time delays were computed.
Although interesting results have been obtained, mainly in
cases of seizures recorded using electrodes implanted in limbic
structures, it should be noted that this method can give
ambiguous results. To decide that there is a time delay depends
on finding a linear relation between phase and frequency over a
sufficiently wide frequency band. A difference in phase (
�)
corresponding linearly to a difference in frequency (
f) repre-
sents a time delay computed as 
t = (
�/
f � 360�).
Alternative methods were proposed by Gersch and Goddard
(208), Gersch and Tharp (209), and Tharp and Gersch (210).
The latter were able to interpret the origin and spread of seizure
activity within the brain of a patient carrying chronically
indwelling electrodes, a conclusion that was not possible on the
basis of visual inspection of the records. Gotman (211) applied
the same principles to the analysis of some iEEG records and
was able to show that at a contralateral site the seizure activity
is delayed by a few milliseconds compared with the seizures at
the focal area. In the same way Gotman and Levtova (212) were
able to determine the relationships between amygdala and hip-
pocampus in temporal lobe seizures.

From these studies, it became clear that the coherence of,
and time delays between, different EEG channels during an
epileptic seizure usually change rapidly in the course of time.
This implies that such seizures must be analyzed using short
EEG segments. An interesting method, also aiming at determin-
ing the time relations between different EEG signals in such a
way that it is possible to estimate the flow of information
between different brain sites, has been proposed by Kaminski
and Blinowska (213), based on autoregressive models. This
method can yield interesting results with respect to how epilep-
tiform seizure activities may spread in the brain from a focal
area (214).

To circumvent the limitations of linearity of the methods
described above, new approaches were pursued. In this context
Mars and van Arragon (215) proposed to compute a measure of
the average amount of mutual information (AAMI), in the
sense of Gelfand and Yaglom (216), between pairs of EEG sig-
nals as a function of the delay time introduced between both
signals. It should be noted that this method is related to the
cross-correlation as defined by Equation 54.10, but is more gen-
eral, since AAMI is not constrained by a linear relation between
both signals. The AAMI method of analysis was used for focus
localization in animals having a kindled epileptogenic focus
(217). In this way, time delays could be found for certain phases
of epileptic seizures and the spread pattern of these seizures
obtained. The same method was also applied to human seizures
(218). The algorithms based on AAMI, however, proved to be
rather cumbersome to apply in practice. This led to the creation
of a new method of nonlinear regression analysis (the h2

method of Refs. 219–221). This consists of computing a general
coefficient of nonlinear fit between any pair of signals. The
applications of this nonlinear regression coefficient to EEG sig-
nals recorded during seizures in animals (222) revealed that a
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large number of EEG signals recorded from different, but func-
tionally related, brain areas present clear nonlinear relations.
The same applies to EEG signals recorded from intracranial
electrodes in patients (220,223) and in rats with absence-like
seizures (224). Thus, this method offers perspectives for the
determination of the site of an epileptogenic focus, based on a
set of simultaneously recorded EEG signals. In a recent study of
Wendling et al. (225) several methods to assess functional brain
connectivity based on signals recorded from different brain
areas during partial complex epileptic seizures (Fig. 56.5) were
applied, namely linear and nonlinear regression, phase syn-
chronization, and generalized synchronization, using a model-
based methodology. This comparison revealed that there was
no “ideal” method, that is, none of the methods performed bet-
ter than the other ones in all studied situations. Nevertheless,
regression methods (linear or nonlinear) showed sensitivity to
the coupling parameter in all tested models with average or
good performances, which leads to the conclusion that it is
advisable to first apply these regression methods in order to
characterize functional brain connectivity, under normal or
pathologic conditions, before using more sophisticated meth-
ods that require specific assumptions about the underlying
model of relationship. In addition, these authors recommend to
use time–frequency methods when it is interesting to determine
functional coupling in specific frequency subbands (“fre-
quency-locking”) as in epilepsy. In this context, it should be
noted that the choice of frequency bands is critical (226). This
was approached by Ansari-Asl et al. (227) using a linear estima-
tor based on the computation of the Pearson product–moment
correlation between EEG signals filtered in narrow and overlap-
ping frequency bands.

An exciting novel development is the possibility of detecting
changes in the EEG that may occur before an epileptic seizure is
manifest in the EEG, that is, to be able to anticipate a seizure.
Chapter 30 is dedicated to this issue.

BRAIN MAPPING: METHODOLOGY

Brain mapping is the current term used for the methodology of
representing the EEG activity, either spontaneous or evoked, in
the spatial domain as a topographical map projected onto the
scalp. This field has developed very much in the last decade so that
the present edition includes a specialized chapter (Chapter 55)
concerned with the use of EEG as a functional imaging method.

COMPUTER SYSTEMS FOR ROUTINE 
APPLICATION IN EEG LABORATORY

Computer technology has advanced very rapidly with the gen-
eralized use of microprocessor technology. Thus, nowadays,
there is a wide choice of computer systems that can be used in
the clinical routine EEG laboratory. These systems offer the
possibility of data acquisition, editing and processing the data,
artifact rejection, statistical analysis, and brain mapping. An
example is the very comprehensive software package developed
by Makeig and collaborators (45,46): EEGLAB that is freely
available (http://www.sccn.ucsd.edu/eeglab/) under a public

license for noncommercial use and open-source development,
together with a user tutorial and extensive documentation.
Besides this package several other open-source software tools
are now available in the public domain that have been devel-
oped to analyze multichannel biomedical signals including
neurophysiologic data, such as low-resolution brain electro-
magnetic tomography (LORETA; standard and exact) devel-
oped by Pascual-Marqui et al. (228,229). Commercially
available since 1996, the ASA software has become rather pop-
ular among clinical and cognitive researchers (230). BioSig is an
open-source software library for brain–computer interfaces,
where an overview of other open-source software tools for bio-
medical signal processing is available (231).

CONCLUDING REMARKS

The field of computer-assisted diagnosis based on EEG/MEG
signals with the aim of automatic analysis of such signals in
clinical situations has developed considerably in the past
decades. In the 1970s in the early stages of this field, many indi-
vidual groups proposed their own algorithms that were almost
always tested only in the own environment. These algorithms
became more sophisticated and more powerful with the
advances in computer facilities and software possibilities.
Nonetheless, most of these algorithms did not reach a wide
acceptance in practice. One weakness is that very few studies
made comprehensive comparisons of the performance of dif-
ferent algorithms on the same test set and using identical crite-
ria. Two interesting contributions that carried out such studies
are that of Dumpelmann and Elger (75), who compared the
performance of two specialist reviewers and three spike-detec-
tion approaches with respect to the detection of epileptiform
spikes, and that of Wendling et al. (225,226) who compared the
performances of several methods to assess functional brain
connectivity, as described above. More of such studies are nec-
essary. In the last two decades new possibilities emerged with
the enhanced availability of comprehensive software packages
that can be used in the clinical routine EEG laboratory, as men-
tioned already. With respect to the latter we may also stress the
need for comparative performance assessment under well-con-
trolled laboratory conditions, particularly regarding their
potentiality as valuable tools to enhance EEG/MEG evaluation
in clinical settings.
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INTRODUCTION AND BASIC PRINCIPLES

A relatively recent development in applied neurophysiology is
an approach called EEG-based brain–computer interface (BCI).
A BCI translates specific features, automatically extracted from
EEG signals, into signals able to operate computer-controlled
devices in order to assist patients who have highly compro-
mised motor functions, such as tetrapalegic patients. This novel
approach became possible due to advances both in methods of
EEG analysis and in information technology, along with a bet-
ter understanding of the psychophysiological correlates of cer-
tain EEG features. Therefore, it is interesting to take notice of
the emerging field of direct brain–computer communication.

A BCI provides the brain with a new nonmuscular commu-
nication channel that can be used to convey messages and com-
mands directly from the brain to the external world without
using any muscle activity (1). Here, we expand this definition to
emphasize that any BCI must have the following four compo-
nents:

1. Direct: The signals must be recorded directly from the brain.
If a device records signals after they pass through peripheral
nerves or muscles, it is not a BCI.

2. Intentional control: At least one directly recordable brain
signal, which can be intentionally modulated, must provide
input to the BCI (electrical potentials, magnetic fields, or
hemodynamic changes).

3. Real-time processing: The signal processing must occur
online and yield a communication or control signal.

4. Feedback: The user must obtain feedback about the success
or failure of his/her efforts to communicate or control.

It follows from these definitions that each BCI is a closed-
loop system with two adaptive controllers: the user’s brain,
which produces the signals and provides the input to the BCI;
and the BCI itself, which analyses the brain signals and trans-
forms them to a control signal as the BCI output (Fig. 57.1).

Any BCI contains components to extract features and classify
(detect) EEG events. The goal of the feature extraction compo-
nent is to find a suitable representation of the EEG signal that
simplifies the subsequent classification or detection of specific
patterns of electrical brain activity. That is, the signal features
should encode the commands sent by the user but should not
contain noise and other signal components that can impede the
classification process. There is a variety of feature extraction
methods used in current BCI systems. A nonexhaustive list of
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Figure 57.1 Principle of a BCI system with the major internal processing steps (A), visual attention-based BCI used
to control a hand orthosis by focusing on one of two flickering lights (LEDs) (B), and motor imagery-based BCI used
to control a virtual reality (VR) hand (C). Motor imagery is the most common mental strategy in BCIs and does not
rely on external stimulation to generate the necessary brain activity (C). BCIs that do rely on external stimulation to
elicit brain activity typically involve spatial visual attention (B).
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these methods includes amplitude and band power measures,
Hjorth parameters, autoregressive parameters, and wavelet coef-
ficients (2–4).

The task of the classifier is to use the signal features provided
by the feature extractor to assign the recorded samples of the
signal to a given category of EEG patterns. In the simplest form,
detection of an EEG pattern may be made, for instance, by
means of a threshold method (5,6). More sophisticated classifi-
cation algorithms of different EEG patterns depend on the use
of linear or nonlinear classifiers (2,7,8).

The classifier output, which can be a simple on-off signal or
a signal that encodes a number of different classes, is trans-
formed into an appropriate signal that can then be used to con-
trol a variety of devices. For most current BCI systems, the
output device is a computer screen and the desired output con-
sists of the selection of certain targets. Advanced applications
include controlling of spelling systems or other external appa-
ratuses such as prosthetic devices and multimedia applications.

Feedback of performance is usually obtained by visualiza-
tion of the classifier output on a computer screen or by presen-
tation of an auditory, tactile, or visual feedback signal. Feedback
is an integral part of the BCI system because the users observe,
for example, selected letters or certain movements simultane-
ously with the brain responses they produce.

EEG PATTERNS USED AS INPUT FOR A BCI

The EEG is the most widely used brain signal in BCIs. Two types
of changes can be extracted from the ongoing EEG signals:

1. Event-related potentials (ERPs) display time and phase-
locked changes (evoked) to an externally or internally paced
event. Evoked signals include slow cortical potential (SCP)
changes, P300 components, and steady-state-evoked poten-
tials (SSVEPs) (9).

2. Event-related changes in ongoing EEG activity in specific
frequency bands. These changes are also time-locked but not
phase-locked (induced). Event-related desynchronization
(ERD) defines an amplitude (power) decrease of a rhythmic
component, whereas event-related synchronization (ERS)
characterizes an amplitude (power) increase (10).

Depending on the phenomena analyzed and classified, the
following EEG-based BCI systems can be differentiated:

The SCP BCI: Beginning in 1979, Birbaumer and coworkers
published a series of experiments demonstrating operant con-
trol of SCPs (see Ref. 11 for review). Operant conditioning is
a learning process with the goal of the self-regulation of brain
potentials (e.g., SCP shifts) or brain waves (e.g., sensorimotor
rhythms) with the help of suitable feedback. This process does
not require continuous feedback, but a reward for achieving
the desired brain potential (wave) change is necessary.
Operant conditioning was used in communication systems
for completely paralyzed (locked-in) patients (12,13).

The P300 BCI: The P300 is the positive component of the
evoked potential that may develop about 300 msec after an
item is flashed. The user focuses on one flashing item while
ignoring other stimuli. Whenever the target stimulus flashes,

it yields a larger P300 than the other possible choices. P300
BCIs are typically used to spell (14–16) but have been vali-
dated with other tasks such as control of a mobile robot (17)
or a smart home (18).

The SSVEP BCI: Steady-state evoked potentials (SSEPs) occur
when sensory stimuli are repetitively delivered rapidly
enough that the relevant neuronal structures do not return to
their resting states. In a BCI application, the user focuses on
one of several stimuli, each of which flickers at a different rate
and/or or phase. Gao et al. (19) described a BCI with 48 flick-
ering lights and a high information transfer rate (ITR) of 68
bits/min. Like P300 BCIs, SSVEP BCIs require no training
and can facilitate rapid communication (9,20,21). SSVEP
BCIs have also recently expanded to tasks beyond spelling,
such as controlling an avatar in a computer game (22–24) or
controlling an orthosis (25). Some BCI articles argued that
the SSVEP can only be used for communication when users
have some conscious control of eye muscles and is therefore
not applicable for patients in the late stages of amyotrophic
lateral sclerosis (ALS) (1,19). Later work showed that this
assumption is incorrect; in some cases, SSVEP BCIs can func-
tion even when users do not shift gaze (9,26).

The ERD BCI: Brain rhythms can either display an event-
related amplitude decrease or desynchronization or an
event-related amplitude increase or synchronization (10).
The term ERD BCI describes any BCI system that relies on
the detection of amplitude changes in sensorimotor (mu
and central beta rhythms) and/or other brain oscillations,
also including short-lasting postimagery beta bursts (beta
ERS, beta rebound) (8,27–29).

One of the first papers reporting on online classification of
different motor-imagery-induced ERD/ERS patterns were pub-
lished by Pfurtscheller et al. (30) and Kalcher et al. (31). At this
time, beside others, the Wadsworth BCI (1,32), the Berlin BCI
(8), the Graz BCI (33), and variants of the Tübingen BCI (34)
use the ERD/ERS as features for single trial EEG classification.
The bit rates reported are between approximately 2 and 17
bit/min (35,36) up to 35 bits/min (8).

The ERD BCI can be operated in two different modes which
determine when the user performs a mental task and, there-
with, intends to transmit a message. The first mode is externally
paced (cue-based, computer-driven synchronous BCI) and the
second mode is internally paced (noncue-based, uncued, user-
driven asynchronous BCI). In the case of a synchronous BCI, a
fixed, predefined time window is used. After a visual or auditory
cue stimulus, the subject has to act and produce a specific brain
pattern. Nearly all known BCI systems work in such a cue-based
mode (1,2,37). An asynchronous protocol requires a continu-
ous analysis and feature extraction of the recorded brain signal.
Thus, such BCIs are generally even more demanding and more
complex than BCIs operating with a fixed timing scheme.

MOTOR IMAGERY AS CONTROL STRATEGY

Several EEG studies indicate that primary sensorimotor areas
are activated when subjects imagine the execution of a hand
movement. Klass and Bickford (38) and Chatrian et al. (39)
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observed blocking or desynchronization of the central mu-
rhythm with motor imagery. By means of quantification of the
temporal-spatial ERD pattern, it was clearly shown that one-
sided hand motor imagery can result in a lateralized activation
of sensorimotor areas, similar to that found in the preparatory
phase of a self-paced hand/finger movement (40,41). Such a
pattern of sensorimotor EEG activity related to motor imagery
can also be found in patients with impaired motor function
(42,43). To date, a number of more recent electrophysiological
studies support motor cortex participation in motor imagery
(e.g., EEG: 44–48; MEG: 49).

An example is shown in Figure 57.2 in the form of band
power time courses of 11- to 13-Hz EEG activity. The ERD/ERS
curves show different reactivity patterns during right and left
motor imagery, displaying a significant band power decrease
(ERD) over the contralateral hand area. It is of interest to note,
first, that contralateral to the side of motor imagery an ERD
and ipsilaterally an ERS were present and, second, that feedback
enhanced the difference between both patterns, and therewith
the classification accuracy (see also Ref. 50).

The enhancement of oscillatory EEG activity (ERS) during
motor imagery is a very important aspect in BCI research. For
example, foot motor imagery can induce long-lasting beta
oscillations during imagery (peri-imagery ERS; Fig. 57.3A)
and/or short-lasting beta bursts after the end of the imagery
process (postimagery ERS; Fig. 57.3B) over the foot representa-
tion area close to the vertex (29,51). The post-imagery ERS is
dominant in the beta band with a maximum ~2.5 seconds after
brisk cue-paced imagery, can be detected with great accuracy
(high rate of true positives, TP; see Fig. 57.3C) in the ongoing
EEG and is therefore a good candidate to realize a one-channel
EEG-based BCI (29,51).

Summarizing, it can be stated that motor imagery can mod-
ify sensorimotor rhythms in a similar way to that observed in
the preparatory phase of an executed movement. Since motor
imagery results in a somatotopically organized activation pat-
terns, mental imagination of different movements (e.g., left vs.
right hand; hand vs. foot) can be an efficient strategy to operate
a BCI based on oscillatory EEG activity. The challenge is to
detect the imagery-related changes in ongoing EEG recordings.
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Figure 57.2 Event-related desynchronization (ERD)/event-related synchronization (ERS) curves (11 to 13 Hz; 95%
confidence intervals indicated) of one representative subject during imagined movements of the left versus right hand
in sessions without feedback (A) and in sessions with continuously present feedback (C). Data were recorded from the
sensorimotor cortex (C3, C4). The time period of cue presentation is indicated by a gray vertical bar. Examples of clas-
sification results of single trials (based on linear discriminant analysis, LDA) of two selected sessions: one without (B)
and one with feedback (D). The x-axis denotes the average size of the distance function (resulting from LDA) for all
left and right trials of one session (for details, see Ref. 69). In the session with feedback, the average distance corre-
sponds to the average length of the feedback bar presented on the screen. Black bars indicate bar movements to the
left side of the screen, white bars indicate bar movements to the right side. The y-axis displays the time points used for
classification. The best classification accuracy for each session is indicated.
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TRAINING PARADIGM AND IMPACT
OF FEEDBACK

Before such a motor-imagery-based BCI can be efficiently used,
the participants have to undergo training in order to obtain
some control of their brain signals and to maximize the classi-
fication accuracy of different brain states. Prior to starting
online feedback sessions with an individual, their brain patterns
(e.g., related to different types of motor imagery) must be
known. To this end, in the first session of an imagery-based BCI
standard protocol, users have to imagine repeatedly different
kinds of movement (e.g., hand, feet, or tongue movement) in a
cue-based mode while their EEG is being recorded (Fig. 57.4A).
Optimally, this would entail a full-head recording of their EEG,
with topographical and time-frequency analyses of ERD/ERS

patterns, and classification of the individual’s brain activity in
different imagery conditions. By applying, for example, the dis-
tinction-sensitive learning vector quantization (DSLVQ) (52) to
the screening data, the most important frequency components
and electrode locations that best discriminate between different
imagery tasks may be identified for each participant, as well as
the accuracy of classification (Fig. 57.4B). After setting up the
initial classifier, subsequent training sessions can start, where
the user receives online feedback of motor imagery–related
changes in the EEG (Fig. 57.4C). Depending on the classifica-
tion accuracy, an update of the classifier and further feedback
experiments may be recommended (Fig. 57.4D). This adapta-
tion process between brain and computer can last for many
days or weeks in patients. To keep the training period as short
as possible, an efficient training strategy is necessary. One
example for this could be the so-called basket game.

In the “basket-game” paradigm, for example, the user has
to mentally move a falling ball into the correct goal (“basket”)
marked on the screen (Fig. 57.5A). If the ball hits the correct
basket, it becomes highlighted and points are earned. The
horizontal position of the ball is controlled via the BCI output
signal and the velocity can be adjusted by the investigator. The
speed of the ball can be increased run by run until the person
considers it too fast. This approach can find the optimal speed
for a maximum ITR. Experiments with two bipolar EEG

1230 Part IX ■ Computer-Assisted EEG Analysis

Figure 57.3 Examples of single EEG trials during foot motor imagery
recorded at electrode position Cz and topographic map indicating the
localized 10-Hz ERS at Cz (A), examples of EEG trials during cue-paced
(second 2) brisk foot motor imagery with postimagery beta ERS
recorded at Cz (B, right panel ), time-frequency map displaying peri-
imagery ERD and postimagery ERS at Cz (B, left panel ), and single trial
classification of peri-imagery ERD and postimagery ERS with indicated
true positives (C).

Figure 57.4 Schema for the workflow of an imagery-based BCI with
EEG recording (A), feature selection (B), experiment with feedback (C)
and classifier update if necessary (D).
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channels and two motor imagery tasks performed by volun-
teers with spinal cord injuries revealed a maximal ITR of 17
bits/min with a trial length (falling time of the ball) of 2.5 sec-
onds (36, see also Fig. 57.5B).

To keep the training period as short as possible, a well-
thought-out training protocol and helpful feedback signals are
essential. The feedback provides the user with information
about the efficiency of his/her strategy and enables learning. In
this context, two aspects are crucial: (i) the exact manner of
how the brain signal is translated into the feedback signal (i.e.,
information content of the feedback; for advantages of provid-
ing continuous or discrete feedback, see Refs. 41 and 50) and
(ii) the type of feedback presentation. In any case, the influence
of the feedback on the capacity for attention, concentration,
and motivation of the user, all aspects which are closely related
to the learning process, should be considered (see also Ref. 53).

BCI studies can use different feedback modalities. In the
auditory modality, Hinterberger et al. (54) and Pham et al. (55)
coded SCP amplitude shifts in the ascending and descending
pitches on a major tone scale. Further studies showed that P300
BCIs could also be implemented with auditory rather than
visual feedback (56,57). A BCI using only auditory (rather than
visual) stimuli would be of importance providing communica-
tion support for severely paralyzed patients with visual impair-
ment (58). Although the mentioned studies could show that
BCI communication using auditory stimuli only is possible,
visual feedback turned out to be superior to auditory feedback.
Recently, Chatterjee et al. (59) presented an ERD BCI using a
motor imagery paradigm and haptic feedback provided by
vibrotactile stimuli to the upper limb. Although further work
will be needed to determine how the neural correlates of

 vibrotactile feedback affect the modulation of the mu rhythm,
haptic information may become a critical component of BCIs,
especially if they are designed to control an advanced neuro-
prosthetic device (60).

Despite successful approaches to the development of nonvi-
sual BCI systems, visual presentation of stimuli is the most fre-
quently used feedback modality in BCI research (1). Typical
visual feedback stimuli comprise cursor movement (8,61), a
moving bar of varying size (50,59), and the trajectory of a mov-
ing object like in the basket game (8,36). Other interesting vari-
ants include color signaling (62) and complex virtual reality
environments (28,63).

There is some evidence that a rich visual representation of the
feedback signal, for example, in the form of a three-dimensional
video game or virtual reality environment, may enhance the
learning progress in a BCI task (53,64). Combining BCI and
 virtual reality technologies could lead to highly realistic and
immersive feedback scenarios. As an important step in this
direction, Pfurtscheller et al. (28) could show that EEG record-
ing and single-trial processing with sufficiently good classifica-
tion results are possible in an immersive multi-projection-based
stereo and head-tracked virtual reality system (CAVE), and that
the obtained signals are even suitable to control events within a
virtual environment in real time.

SOME EEG-BASED BCI APPLICATIONS

Currently, the most important applications of a BCI include the
restoration of communication for patients with a locked-in-
syndrome and the control of neuroprostheses in patients with
spinal cord injuries (1,12,65). In addition to these, there is the
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Figure 57.5 Graphical display of the “basket-paradigm” (A). The subject has to direct the ball to the indicated goal
 (“basket”). The trial length varies across the different runs. Information transfer rate (ITR) for one subject in relation to
trial length. The black line represents the maximum possible ITR for an error-free classification (B) Modified from Krausz
G, Scherer R, Korisek G, et al. Critical decision-speed and information transfer in the “Graz Brain-Computer Interface.”
Appl Psychophysiol Biofeedback. 2003;28:233–240.
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important field of neurofeedback to support feedback training
in people suffering from epilepsy or stroke (66). Today, the
world of BCI application is expanding and new fields are open-
ing. One emerging opportunity is to use the BCI to control
multimedia applications (67,68), another is to use the BCI for
user authentication (69,70). Some applications are explained in
more detail below.

Control of Spelling Systems in Severely 
Paralyzed Patients
Spelling systems are communication aids that allow users to
express themselves by selecting letters or items of an alphabet
and thus form words and sentences. The simplest case involves
a binary control signal requiring two distinctive mental activi-
ties. Patients suffering from ALS can learn to control their own
SCP BCI and so to operate the thought translation device
spelling device (5,12). By using the same dichotomous selection
strategy an ALS patient and a patient suffering from severe cere-
bral palsy (71) learned to operate the virtual keyboard spelling
application (72). The spelling rates in these studies varied from
0.15 to approximately 1 letter/min. An example for such a
spelling system with an ERD BCI is displayed in Figure 57.6B.

The Wadsworth speller, based on mu and beta activity for
example, divides the alphabet into four parts (73). In Millán
and Mouriño (74) an average spelling rate of ~3 letters/min was
reported by using a 3-class BCI. A novel spelling concept, pos-
sible due to the asynchronous protocol, was introduced by
Scherer et al. (75). Another efficient selection strategy was

introduced recently by Müller and Blankertz (76). The Hex-
O-Spell application combines asynchronous 2-class ERD BCI
control and divides the alphabet into six parts. This raised 
the average spelling rate up to ~6 letter/min.

Control of Neuroprosthesis to Restore 
Grasp Function
In general, systems for functional electrical stimulation
(FES)—the so-called neuroprostheses—are able to restore lost
control/motor functions of body parts after spinal cord injury
(SCI) with the use of electrical impulses. The control signal
generated by the BCI switches the FES on/off. In a project
with a tetraplegic patient, FES resulting in hand grasp was
controlled by ongoing EEG activity based on an asynchronous
BCI. The patient underwent a large number of BCI training
sessions with varying types of motor imagery over a period of
several months (77). At the end, he was able to induce trains
of 17-Hz beta oscillations focused on the electrode position
near the vertex (Cz) by foot motor imagery. These mentally
induced 17-Hz oscillations were used as a simple asynchro-
nous brain switch to generate a control signal for the opera-
tion of the FES using surface electrodes (Fig. 57.6D). With this
method the patient was able to grasp a glass at “free will” (for
a detailed description of the procedure see Ref. 78). Müller-
Putz et al. (79) reported on an implantable neuroprostheses,
known as the Freehand system (80), coupled with an ERD BCI
and used in a tetraplegic patient to perform a grasp sequence
(Fig. 57.6C).

1232 Part IX ■ Computer-Assisted EEG Analysis

Figure 57.6 Two students playing table tennis (A), ALS patient operating a spelling system at home (B), motor-imagery-
based control of a neuroprosthesis through implanted functional electrical stimulation (FES) of hand muscles (C), motor-
imagery-based control of a neuroprosthesis through FES of hand muscles using surface electrodes (D), wheel chair control
in a virtual environment (E), and control of virtual hand movement (F).(See color insert)
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Rehabilitation after Stroke
Typically, physical therapy aimed at poststroke motor recovery
focuses on active movement training. Some patients, however,
are so severely disabled that they cannot engage in movement
without assistance. Newly developed protocols based on men-
tally rehearsing movements (motor imagery) represent an
intriguing backdoor approach to accessing the motor system,
because they can induce an activation of sensorimotor net-
works that the lesions affected (81).

It is known that unilateral hand motor imagery can result in
a contralateral ERD and simultaneously in an ipsilateral ERS
after some training sessions (40). Hence, an ERD BCI based on
movement imagery can provide some measure of attempted
activity in the motor regions and reinforce a patient’s sensori-
motor experience during poststroke motor recovery. Feedback
from the BCI can be solely visual, as in the movement of a vir-
tual hand (Figs. 57.1C and 57.6F) or it can occur through a
prosthetic device like an orthotic hand attached to the patient’s
own (64,82). In both cases, not only can positive feedback rein-
force the motor imagery process, but the act of observing the
hand movement can itself activate sensorimotor areas.

PERSPECTIVES FOR THE FUTURE

BCI technology is a fast growing field of research and applica-
tions with the potential to improve the quality of life in severely
disabled people. To date, several BCI prototypes exist and most
of them work in a laboratory environment only. Before a BCI
can be used for communication and control at home or work,
several problems have to be solved, such as how to (i) automat-
ically select electrode positions and frequency components in a
motor imagery task, (ii) use the fewest number of recording
electrodes possible (the optimum is one EEG channel), (iii)
minimize the training time through game-like feedback, and

(iv) automatically detect artefacts. It can be expected that mak-
ing BCIs useful to a wider group of users will open up new fields
of applications such as entertainment in the next several years.

We recently reported on a one-channel EEG-based BCI that
detects the postmotor imagery beta rebound (29,51). This beta
rebound is a relatively stable EEG phenomenon (47) that can be
detected in single trial EEG during foot motor imagery and
used to realize a “brain switch.” Such a brain switch is a BCI sys-
tem designed to detect only one brain state (brain pattern) in
the ongoing EEG signal (83). One important feature of such a
brain switch is that unintended activations should not occur in
the output signal. That is, the false-positive rate should be zero
or close to zero. An imagery-based brain switch can be used to
turn on/off the flickering lights of an SSVEP-controlled hand
orthosis (25). This type of BCI, composed of two sequentially
operating BCIs, can be seen as an example of a “hybrid BCI.”

A clear challenge is to develop more effective BCI control par-
adigms, offering, for instance, three-dimensional control over a
neuroprostesis or the operation of a spelling device with a speed
of at least 5 to 10 characters/minute. Such an improvement of
speed and accuracy is possible by analyzing cortical potential
changes recorded with subdural electrode strips or grids or the
detection of firing patterns in intracortical recordings. Figure
57.7 shows the three types of potential recording with EEG, sub-
dural electrodes (ECoG), and microelectrode array. The advan-
tage of the ECoG over the EEG is the better signal-to-noise ratio,
which includes easier detection of gamma activity. Recently,
bursts of gamma activity between 60 and 90 Hz in ECoG record-
ings during self-paced limb and tongue movements were
reported (84,85). These gamma bursts are short lasting, display a
high somatotopic specificity, and are embedded in the alpha and
beta ERD lasting for some seconds. Patient-oriented work with
subdural electrodes and ECoG single-trial classification have
shown first promising results (3,86).
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Figure 57.7 Schema of electrical potential recording in BCI research with non-invasive EEG elec-
trodes, invasive subdural electrode strip (array), or highly invasive microelectrode array in the cortex.
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Studies in monkeys have shown that three-dimensional con-
trol is possible when multiunit activity is recorded in cortical
areas. Between 32 and 96 microwires were implanted in differ-
ent cortical motor areas. After a training period with distinct
motor tasks, the monkeys were able to achieve three-dimen-
sional control over the movement of a robotic device by real-
time transformation of neuronal multiunit neuronal activity
(87). The feasibility of a prosthetic device control in a
tetraplegic patient based on recording of neural ensemble activ-
ity through a 96-microelectrode array (Fig. 57.7) was reported
by Hochberg et al. (88). These early results suggest that record-
ing of intracortical neuronal multiunit activity could provide a
new neurotechnology to restore independence for humans with
paralysis.
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GENERAL ASPECTS

The most comprehensive form of monitoring of cerebral func-
tioning is obtained when electroencephalograph (EEG) and dif-
ferent modality-evoked potentials (EPs) are recorded and
analyzed continuously and simultaneously. This means that EEG
spectra, brainstem auditory-evoked potentials (BAEPs), and cer-
vical and cortical somatosensory-evoked potentials (SEPs) are
computed at intervals of seconds to minutes and displayed in a
compressed form. In addition to EEG and EPs, other physiologi-
cal signals, such as heart rate (HR), ventilation, temperature, oxy-
gen saturation, and blood pressure, may be useful, depending on
the particular condition. This monitoring can be performed in the
operating room, in the intensive care unit (ICU), in the sleep lab-
oratory, or in the outpatient clinic. For extensive literature on this
subject, see Nuwer (1) and Chapters 39, 40, and 41 of this book.

TECHNICAL ASPECTS OF CONTINUOUS
MONITORING OF EEG SPECTRA 
COMBINED WITH EPs

The techniques necessary for long-term monitoring of EEG and
BAEPs were established in normal subjects by Maresch et al.
(2). They used two EEG channels (Cz-A1 and Cz-A2) with
broadband amplifiers (1.5 Hz to 1.5 kHz); after amplification
the signals were divided into low-frequency (EEG; lower cut-off
frequency 30 Hz) and high-frequency (BAEP; upper cut-off fre-
quency 250 Hz) branches. In other studies these responses were
complemented with recordings of SEPs (3,4). The main techni-
cal considerations in this type of analysis are that (a) different
sampling frequencies must be used because of the rather differ-
ent frequency contents of the signal, for example, EEG and
BAEP; and (b) the number of samples should be minimized to
save memory storage, since the analysis must be done over long
periods of time. A way to solve these technical problems is
introduced in Figure 58.1 by the sampling schema.

Measurements in the operating room or ICU may be easily
affected by noise. To avoid main artifacts (50 or 60 Hz), the
interstimulus interval between auditory and somatosensory
stimulation should be variable. More specifically, intervals
should be alternatively small or large (e.g., to cancel 50 Hz: audi-
tory stimulation 110/90 msec; somatosensory stimulation
210/190 msec). In addition, the stimuli should be applied either
on the positive or negative peak of the main frequency EEG
component. With this technique, fairly good results are obtained
in unshielded rooms and with electrical equipment nearby.

LONG-TERM MONITORING IN 
THE INTENSIVE CARE UNIT

A great number of patients in the ICU are comatose or recover-
ing from coma, since coma can be caused by many disorders
including severe head injury, vascular lesions, encephalitis,
posthypoxic or postischemic events, and drug intoxication,
among others. The monitoring of ICU patients is important to
detect critical situations as fast as possible, to facilitate therapeu-
tic decisions, to monitor the level of impaired consciousness,
and to predict the clinical outcome. Another important feature
in the ICU is the determination and documentation of brain
death, which is a prerequisite for most organ transplantations.
The following case report of a patient with unfavorable outcome
underlines the importance of monitoring of comatose patients:

A 57-year-old woman with hypernephroma suffered from
hypertension for several years. She was admitted with a left hemi-
sphere hemorrhage and was soporous. She had a right hemiplegia
and responded appropriately to painful stimuli on the left side.
The dominant EEG frequency was 5 to 6/sec, and there was a
delta-wave focus over the left hemisphere. On the first day, a ven-
tricular drainage of cerebrospinal fluid was performed. In the fol-
lowing 6 days, the patient’s condition deteriorated. After 2 days,
she developed anisocoria. One day later, respiration was insuffi-
cient. The patient showed extensor responses to painful stimuli.
After 5 days, pupillary light reaction and ciliospinal, cornea, and
oculocephalic reflexes were negative, and there was no longer any
reaction to painful stimulation. The cranial computed tomogra-
phy (CT) scan showed an enlargement of the hemorrhage and
signs of an increased intracerebral pressure (ICP).

Figure 58.2 shows the various parameters registered from
the time of admission, throughout the critical rise of ICP, and
until brain death was clinically determined. Five days after
admission, at 6:20 AM, the intracranial pressure rose to a critical
level of 56 mm Hg, in spite of the ventricular drainage.
Amplitudes of the cortical SEPs decreased and finally disap-
peared 30 minutes later. The peak of the EEG spectra shifted to
lower frequencies. Pathological HR and heart rate variability
(HRV) were observed. Seven hours later, BAEP components
IV/V vanished; another 30 minutes later, wave III disappeared,
and 60 minutes later, all BAEP components were abolished.

This example provides evidence that monitoring of only one
signal gives incomplete information. From the SEPs alone, it can
be seen that the cortical component disappeared at 6:50 AM,
whereas the cervical component remained unchanged for about 8
additional hours. The cortical component N20 is very sensitive to
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1238 Part IX ■ Computer-Assisted EEG Analysis

Figure 58.2 Protocol from a 57-year-old patient with a left hemispheric hemorrhage during deterioration of the comatose
state and ending with brain death. From left to right: compressed EEG spectra from left and right hemispheres; brainstem
auditory-evoked potential (BAEP) to ipsi- and contralateral ear stimulation; BAEP interpeak latency (I–V); cervical (N14)
and cortical (N20) SEPs; central conduction time (CCT); heart rate (HR); heart rate variability (HRV); intracranial pressure
(ICP); systolic (Bpsys) and diastolic (Bpdia) blood pressure; and rectal body temperature (TEMP). Important events are
indicated by arrows. For further explanation, see text. Modified from Hilz MJ, Litscher G, Weis M, et al. Continuous mul-
tivariable monitoring in neurological intensive care patients—preliminary reports on four cases. Intensive Care Med.
1991;17:857–893.

Figure 58.1 Sampling scheme of EEG, somatosensory-
evoked potential (SEP), and brainstem auditory-evoked
potential (BAEP) during computer-controlled click (C) and
electrical (E) median nerve stimulation as used for the data
displayed in Figures 60.2 and 60.3B; sampling and electri-
cal and auditory stimulation are indicated. BAEP sampling
lasts for 10 msec, SEP sampling for 50 msec, the SEP sam-
pling window is variable in a range of 90 msec. Computer-
controlled SEP stimulation in intervals of 210/190 msec and
BAEP stimulation in intervals of 111/89 msec.

89424_ch58  15/09/10  4:03 PM  Page 1238

Niedermeyer's Electroencephalography : Basic Principles, Clinical Applications, and Related Fields, edited by Donald L. Schomer, and da Silva, Fernando Lopes, Wolters Kluwer Health, 2010.
         ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unc/detail.action?docID=2032003.
Created from unc on 2023-05-27 00:05:16.

C
op

yr
ig

ht
 ©

 2
01

0.
 W

ol
te

rs
 K

lu
w

er
 H

ea
lth

. A
ll 

rig
ht

s 
re

se
rv

ed
.



ischemia (6), and its disappearance signals that cortical damage
occurred early in the morning. BAEPs show gradual deterioration
of the waves V, IV, III, and II in the time between the disappear-
ance of the cortical and cervical SEP components. This can be
interpreted to mean that the brainstem function deteriorated dur-
ing that time (starting from the midbrain level). In summary, it is
clear that the most comprehensive picture of the cerebral state in
comatose patients can be obtained only by monitoring different
neuronal systems and signals with use of EEG, SEPs, and BAEPs.

The importance of multimodality EP measurements in
patients with severe head injury was documented by Anderson
et al. (7), Greenberg et al. (8), and others. EPs can be even more
reliable than intracranial pressure measurements in predicting
the clinical outcome (7). Combined EEG and EP monitoring
can also be used to differentiate comas due to structural lesions
from those of metabolic origin (9).

Besides EEG and EPs, the HR and HRV are displayed in
Figure 58.2. The HRV was initially high, dropped at 1:00 p.m.,
and remained depressed, with an exceptional increase during
the disappearance of the cervical component of the SEP. The
HRV indicates the spontaneous physiological variations in the
HR modulated by the parasympathetic and sympathetic activ-
ity of the cardiac nerves. This activity originates mainly in the
medullary circulatory center but is also influenced by higher
centers (10). HRV in normal subjects and in brain death was
reported by Schwarz et al. (11) and in newborns by Mehta et al.
(12). Strong correlations exist between EEG and HRV during
sleep (13). The measurement of HRV, therefore, is a sensitive
parameter to monitor brainstem functions in parallel with or
instead of BAEPs (BAEP measurements are not always possible
in patients with severe head injury). A decrease of HRV, there-
fore, can also indicate deterioration of brainstem function.

MONITORING IN THE OPERATING ROOM

In the operating room, there are two different applications for
cerebral monitoring systems. One is to provide the surgeon with
continuous information and warnings about potential damage to
the spinal cord and other neuronal structures. Monitoring, there-
fore, is indicated in spinal cord operations involving risk of
ischemia from compression of feeding blood vessels, aneurysm
surgery, cerebrovascular procedures, and posterior fossa opera-
tions (1,14). The prognostic significance of SEP, BAEP, and serum
S-100B monitoring after aneurysm injury was documented by
Schick et al. (15). The second reason for cerebral monitoring is to
assist the anesthetist in avoiding brain damage caused by hypoxic
and/or ischemic events (16), to control the depth of anesthesia,
and to avoid intraoperative wakefulness (17). Further details on
intraoperative monitoring are presented in Chapter 39.

Because of the different neuronal systems involved in the
generation of EEG, SEPs, and BAEPs and their different sensi-
tivity to the effect of drugs, particularly anesthetics, it is very
understandable that combined monitoring of all brain signals
together gives more information on neuronal signals than the
monitoring of one signal alone.

An example of multiparametric monitoring of EEG spectra
combined using different modality EPs under halothane

 anesthesia is demonstrated in Figure 58.3. The recordings were
taken from a 31-year-old patient during the initial phase of an
orthopedic surgical intervention without neurological complica-
tions. Collection of the biological data started before anesthesia.
Approximately 1 minute after administration of etomidate
(Hypnomidate) (23 mg), the expected EEG changes occurred
(Fig. 60.3; marked with A). The cardiovascular effects intensified
after intubation (B) and after application of pancuronium (4 mg)
(C). With increasing concentration of halothane, changes in EEG
spectra and cortical SEPs were accentuated (E). The patient was
monitored for more than 90 minutes. Despite the massive changes
in the EEG as demonstrated in the band power trend curves due
to the individual concentration, the BAEPs remained nearly
unchanged. The cervical SEP showed an increase in latency of
1 msec, and the cortical N20 component was not identifiable with
deeper levels of anesthesia. Synchronous systolic blood pressure
measurements displayed a decrease from 135 to 85 mm Hg.

The protocol of Figure 58.3 is a good example of the influ-
ence of the level of anesthesia on different neuronal systems.
EEG and cortical SEPs are heavily changed, while BAEPs and
cervical SEPs are only slightly modified during high levels of
halothane. It is of interest to see the different behavior of power
trend curves dependent on the frequency band used. Blood
pressure and HR measurements give additional information on
the cardiovascular system and should be also recorded.

SLEEP MONITORING IN INFANTS AT RISK

In polysomnography, a great number of different signals must be
recorded and analyzed. One goal of the sleep polygraphy in
infants is to study babies at risk for sudden infant death syndrome
(SIDS), that is, babies with sleep apnea and near-miss SIDS
(18,19). In this type of monitoring, in addition to the EEG, differ-
ent physiological signals such as HR electro-oculogram (EOG),
electromyogram (EMG), pO2, and pCO2 must be recorded and
analyzed to reliably classify sleep stages and to differentiate
between rapid eye movement (REM) (active sleep) and non-REM
(NREM) (quiet sleep) state. Additional recording of BAEPs is
technically possible and allows for monitoring of the brainstem at
the same time. Monitoring of BAEPs during nocturnal sleep
cycles was reported by Bastuji et al. (20). They found that the
latency of wave V was increased and related to physiological
hypothermia during the night. This gives evidence of how sensi-
tive BAEP measurements are and that brainstem signals are
affected not only by pathophysiological but also by physiological
variations.

An example demonstrating the simultaneous recordings of
EEG and BAEPs in a 4-month-old baby is shown in Figure 58.4.
EEG power trend curves, HR, pO2, and pCO2 show characteris-
tic patterns in active sleep and quiet sleep. Slow EEG waves,
spindle activity (10–12 Hz), and pCO2 increased during quiet
sleep, and HR and HRV decreased. In active sleep, HR and HRV
increased, and slow-wave activity and spindles decreased. A
period of arousal is indicated by HR increase. This example
again demonstrates the usefulness of simultaneous monitoring
of various cardiovascular and cerebral parameters, as, for exam-
ple, HR, oxygen saturation, EEG spectra, SEPs, and BAEPs.
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1240 Part IX ■ Computer-Assisted EEG Analysis

Figure 58.3 Protocol from a case under halothane anesthesia. From left to right: compressed EEG spectra, power trend
curves (0 to 4, 4 to 8, and 12 to 24 Hz), mean frequency (7 to 14 Hz), BAEPs, cervical and cortical SEPs, CCT, HR, HRV,
and diastolic and systolic blood pressure (BP). On the right side, the level of anesthesia is marked. See text for further
explanation.

Figure 58.4 Monitoring protocol from a 4 month-old baby during active and quiet sleep. From left to right:
Compressed power spectra from left and right hemispheres; BAEPs ipsi- and contralateral to auditory stimulation;
BAEP interpeak latency (I–V); 10- to 14-Hz power trend; HRV; pO2; pCO2; and EEG power trend curves. For further
explanation see text.
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