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Abstract: The sample distribution is defined as the distribution of the sample mea-

surements given the selected sample. Under informative sampling, this distribution

is different from the corresponding population distribution, although for several

examples the two distributions are shown to be in the same family and only differ

in some or all the parameters. A general approach of approximating the marginal

sample distribution for a given population distribution and first order sample se-

lection probabilities is discussed and illustrated. Theoretical and simulation results

indicate that under common sampling methods of selection with unequal proba-

bilities, when the population measurements are independently drawn from some

distribution (superpopulation), the sample measurements are asymptotically inde-

pendent as the population size increases. This asymptotic independence combined

with the approximation of the marginal sample distribution permits the use of stan-

dard methods such as direct likelihood inference or residual analysis for inference

on the population distribution.
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1. Introduction

Survey data may be viewed as the outcome of two random processes: The
process generating the values in the finite population, often referred to as the
‘superpopulation model’, and the process selecting the sample data from the
finite population values, known as the ‘sample selection mechanism’. Analytic
inference from survey data relates to the superpopulation model, but when the
sample selection probabilities are correlated with the values of the model response
variables even after conditioning on auxiliary variables, the sampling mechanism
becomes informative and the selection effects need to be accounted for in the
inference process.

In this article, we propose a general method of inference on the population
distribution (model) under informative sampling that consists of approximating
the parametric distribution of the sample measurements. The sample distribu-
tion is defined as the distribution of measurements corresponding to the units in
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the sample. Let Yi denote the value of a response variable Y , associated with
unit i that belongs to a finite population U = {1, . . . , N}. We assume that the
population values are independent realizations from a distribution with proba-
bility density function (pdf) fp(yi|θ) which depends on parameters θ. In Section
3 and onward we allow the pdf to depend also on known values of concomitant
variables, as in regression or logistic regression models. The population pdf may
be either discrete or continuous.

The (marginal) sample pdf of Yi is defined here as f(yi|i ∈ s) where S denotes
the selected sample and is obtained by application of Bayes theorem as

fs(yi|θ∗) = f(yi|i ∈ s) = Pr(i ∈ s|yi)fp(yi|θ)/Pr(i ∈ s), (1.1)

where θ∗ is a function of θ and any parameters indexing Pr(i ∈ s|yi). In Section 3
we derive an alternative representation to (1.1) and justify the use of the sample
pdf (1.1) for inference. Note that unless Pr(i ∈ s|yi) = Pr(i ∈ s) for all yi, the
sample and population pdfs are different, in which case the sampling scheme is
informative. A simple example giving rise to such informative sampling is the
case where fp(yi|θ) is Gamma(α, β) and Pr(i ∈ s|yi) is proportional to yi. It
is easy to see (e.g., Patil and Rao (1978)), that the sample pdf is in this case
fs(yi|θ∗) = Gamma(α + 1, β). Several practical examples are studied in Sections
4 and 5.

The main theme of this paper is that it is possible in general to approximate
the parametric distribution of the sample measurements and use this approxi-
mation for inference on the corresponding population distribution, exploiting the
relationship between the two distributions. In particular, since the parameters of
the sample pdf include the parameters of the population pdf, the parameters of
the population pdf can be estimated by applying maximum likelihood or other
estimation methods to the sample measurements, employing their sample dis-
tribution. The hypothesis that the population distribution belongs to a given
family of distributions can be studied by testing that the sample distribution be-
longs to another, derived family of sample distributions, and so forth. The main
advantage of basing the inference on the sample distribution is that it permits
the use of standard efficient inference procedures. See Section 5 for illustrations
and references.

It should be emphasized that under standard sampling methods, the sampled
observations are not independent. However, in Section 6, we consider sampling
schemes in common use and establish conditions under which for independent
population measurements, the sample measurements are asymptotically inde-
pendent. This allows us to construct the sample likelihood from the marginals
and apply standard inference procedures. The implications of these results to
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cluster sampling are also discussed. Simulation results illustrate the asymptotic
independence of the sample measurements for other sampling schemes as well.
The theoretical proofs are given in the Appendix.

In survey sampling practice, the sample selection probabilities are defined
by the values of a set of design variables like strata and cluster indicators, size
measures, etc. When the population values of all the design variables used for
the sample selection or adequate approximations of them are known, an alter-
native method of coping with the informativeness of the sampling scheme is by
conditioning on these values. See Section 2. This modeling paradigm, however,
is often very complicated and may be of little intrinsic interest. It is not feasible
when some or all of the design variables are known only for the sample units
or when the sample selection probabilities depend directly on the values of the
response variables. A different approach in wide use to deal with the effects of
informative sampling is to replace the ordinary sample estimates or estimating
equations by weighted analogues obtained by weighting the sample observations
inversely proportional to the sample selection probabilities. The use of this ap-
proach is restricted in general to point estimation and does not permit the use
of standard inference tools such as likelihood based inference or residual anal-
ysis. Probabilistic statements require large sample normality assumptions. See
Pfeffermann (1993) for discussion and references.

2. Ignorable and Informative Sampling Schemes

In this section we review conditions under which the sampling scheme can
be ignored for inference and discuss their limitations. To simplify notation, we
suppress the parameters in the densities below. Denote by I the (N × 1) sample
indicator (vector) variable such that Ij = 1 if unit j ∈ U is selected to the
sample and Ij = 0 otherwise. The sample S is defined accordingly as S = {j|j ∈
U, Ij = 1}. Note that by definition of probability sampling, Pr(Ij = 1) > 0 for
all j ∈ U . Let Z = [Z1, . . . , ZN ]′ define an (N × q) matrix of population values of
q design variables Z(1), . . . , Z(q) (different from Y , see below) employed for the
sample selection process. The design variables may include indicator variables
determining stratum and cluster membership or quantitative size variables. The
values in Z may be regarded as random realizations although in what follows we
condition on Z.

The joint pdf of Y = (Y1, . . . , YN )′ and I, given Z, can be written as

fp(y, i|z) = fp(y|z) Pr(i | y, z), (2.1)

where fp(y, i|z) is the conditional pdf of (Y , I)|Z = z at (y, i) and similarly for
Pr(i|y, z).
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Drawing the sample partitions the population values of Y and Z into the sets
[Ys, Zs] = {(Yj , Zj), j ∈ s} and [Y s̃, Zs̃] = {(Y�, Z�), � �∈ s}. Note that S = S(I).
Suppose first that both Zs and Zs̃ are known. This is normally the case when
selecting the sample, but not necessarily so in a secondary analysis based on files
released for ‘public use’. For known Z, the data consist of the triple (Ys, Z, I),
and the joint pdf of (Ys, I) given Z is obtained by integrating (2.1) over the
nonsampled items Y s̃ with the sample units held fixed, i.e.,

f(ys, i|z) =
∫

Pr(i|ys,ys̃, z)fp(ys,ys̃|z)dy s̃. (2.2)

The formulation in (2.2) is very general and imposes no restrictions on the sam-
ple selection mechanism. Ignoring the sampling mechanism, however, means
that Pr(i|ys,ys̃, z) is omitted from the right hand side of (2.2) and inference
conditioned on Z is based on the pdf

f(ys|z) =
∫

fp(ys,ys̃|z)dys̃. (2.3)

Clearly inference based on (2.2) is not generally the same as inference based on
(2.3) because of possible sample selection effects. Suppose, however, that the
selection probabilities only depend on Z in the sense that

Pr(i|ys,ys̃, z) = Pr(i|z). (2.4)

Under this condition, inference on the conditional pdf of Y |Z, postulating (2.3), is
equivalent to inference based on (2.2) and the sampling mechanism is ignorable.
In particular, f(ys|i, z) = f(ys|z). Thus, by conditioning on the population
values of all the design variables that determine the selection probabilities, the
sampling mechanism can be ignored and standard inference procedures apply.

Weaker conditions for sample ignorability are given in Rubin (1976) and Lit-
tle (1982), depending on whether the inference is based on repeated sampling
theory, direct likelihood or the posterior distribution under the Bayesian formu-
lation. Sugden and Smith (1984) establish conditions for sample ignorability for
the case where the sampling condition (2.4) is satisfied but only proxy design
variables W = W (Z) are known at the inference stage. A special case of a proxy
design variable is the vector π′ = (π1, . . . , πN ) of the first order sample inclusion
probabilities πj = Pr(j ∈ s) = Pr(Ij = 1|z). If Pr(i|z) = Pr(i|π), the vector π

is an ‘adequate summary’ of Z and the sampling mechanism can be ignored for
inference that conditions on π. Rubin (1985) shows that π is in fact the coarsest
possible adequate summary of Z, although it may be too coarse.

There are three major problems associated with conditioning on Z or W (Z)
for securing sampling ignorability.
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(1) It requires in principle that the population values of all the design variables,
or at least adequate summaries of them, are known. As already mentioned,
this is often not the case in a secondary analysis of public use data.

(2) Modelling fp(y|z) or even fp[y|w(z)] could be complicated and, perhaps more
importantly, be of little interest. For example, in epidemiological studies sam-
pling probabilities are often determined by a preliminary, inexpensive but in-
accurate screening test, but there is no interest in conditioning on the screen-
ing test results when modeling the more accurate diagnostic measurements
obtained later for the sampled units.

(3) Conditioning on Z to control for the effects of the sampling mechanism is not
sufficient when Condition (2.4) is not satisfied as happens, for example, in
retrospective studies where the selection probabilities are determined directly
by the response variable values. Several actual sampling designs and inference
problems giving rise to such situations are reviewed in Pfeffermann (1996). See
also Section 4.
In the rest of this paper we consider situations, often occurring in practice,

where the only design information available to the analyst is the vector πs of the
first order sample selection probabilities for units in the sample, and possibly also
the sample values of some or all the design variables. In such cases conditioning
on Z is no longer plausible. These situations fall under cases (iv)-(vi) in Table 1 of
Sugden and Smith (1984), with ws = πs. Unlike in Sugden and Smith, however,
we permit the selection probabilities to depend on the values of the response
variable, thus violating also the sampling ignorability condition (2.4).

3. Marginal Distribution of Sample Observations

In what follows, we allow the population pdf to depend on known values
of concomitant variables xi such that Yi ∼ fp(yi|xi;θ). The vectors xi may
include some of the design variables as well as other auxiliary variables. For
example, in a regression model with y measuring hypertension, the x-variables
may include strata indicator variables and age, used to define sampling rates,
as well as blood lead levels and other health measurements known only after
sampling. In this and the next two sections we consider the marginal distribution
of the sample measurements. In Section 6 we define conditions under which the
sample measurements are asymptotically independent so that the joint sample
distribution can be approximated by the product of the marginal distributions.

For the case where the population pdf depends on concomitant variables, the
marginal sample pdf of Yi is defined analogously to (1.1) as

fs(yi|xi) = f(yi|xi, Ii = 1) = Pr(Ii = 1|yi,xi)fp(yi|xi)/Pr(Ii = 1|xi). (3.1)
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Comment 1. Pr(Ii = 1|yi,xi) is generally not the same as the sample selection
probability πi = Pr(Ii = 1|y, z) where y and z denote the realized population
values of Y and Z.

Comment 2. It follows from (3.1) that the marginal sample pdf is different
from the marginal population pdf (before sampling), unless Pr(Ii = 1|yi,xi) =
Pr(Ii = 1|xi) for all yi, in which case the sampling scheme is noninformative
conditional on xi.

Comment 3. The sample pdf can be viewed as a special case of the family of
‘weighted distributions’ introduced by Rao (1965). Several models and selection
procedures giving rise to such distributions are discussed in Patil and Rao (1978).

In what follows, we regard the probabilities πi = Pr(Ii = 1|y, z) as real-
izations of random variables (Smith (1988)). As mentioned before, in general
πi �= Pr(Ii = 1|yi,xi). Nonetheless, the following relationship holds,

Pr(Ii = 1|yi,xi) =
∫

Pr(Ii = 1|yi,xi, πi)fp(πi|yi,xi)dπi = Ep(πi|yi,xi) (3.2)

since Pr(Ii = 1|yi,xi, πi) = πi. Substituting (3.2) into (3.1) yields the alternative
expression for the marginal sample pdf,

fs(yi|xi) = Ep(πi|yi,xi)fp(yi|xi)/Ep(πi|xi), (3.3)

where the expectation in the denominator follows by an argument similar to
(3.2).

The prominent feature of (3.3) is that for a given population pdf, the
corresponding sample pdf is fully determined by the conditional expectation
Ep(πi|yi,xi). Files of survey data released for secondary analysis ordinarily con-
tain the selection probabilities in the form of the sampling weights wi = π−1

i

(possibly modified to account for unit nonresponse) so that the expectations
Ep(πi|yi,xi) can be estimated in principle from the sample data. (See Section 5
for details.) Note that the use of (3.3) does not require the specification of the
full distribution of the πi which is often intractable.

Comment 4. When the population pdf does not depend on concomitant vari-
ables, so that Yi ∼ fp(yi|θ), the relationship (3.3) reduces to

fs(yi) = Ep(πi|yi)fp(yi)/Ep(πi). (3.4)

The denominator is now a fixed number, although it may depend on unknown
parameters.

We conclude this section by justifying the consideration of the conditional
pdfs (3.1) and (3.3), or more generally f(ys|Xs, s) where Xs = {xi, i ∈ s}. Sup-
pose that the population measurements are independent such that Yi ∼ fp(yi|xi)
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where the xi are fixed values of concomitant variables, and assume for now that
the sampling units are selected to the sample independently with probabilities πi

having expectations π(yi,xi) = E(πi|yi,xi). (Asymptotic independence of the
sample measurements is discussed in Section 6.) Simple calculations imply that
the full distribution of (Ys, i) is in this case

f(ys, i|X) = Πi∈s[π(yi,xi)fp(yi|xi)/π0i]Πi∈s(π0i)Πi�∈s(1 − π0i), (3.5)

where π0i =
∫

π(yi,xi)fp(yi|xi)dyi = Pr(i ∈ s|xi) and X = {xi, i ∈ U}. Note
that the pdf in the square brackets is the conditional marginal sample pdf as
defined by (3.1).

Let the population pdf be indexed by the unknown parameter θ such that
fp(y|x) = fp(y|x; θ), and suppose that the vectors xi are only known for units
in the sample. If the target of inference is, for example, to estimate θ by use
of maximum likelihood, it is clear that the likelihood obtained from (3.5) is
not operational because the product Πi�∈s(1 − π0i) depends on all the individual
vectors xi, i �∈ s and these vectors are usually not part of the data. Thus, data
availability dictates basing the inference in this case on the more limited pdf
f(ys|Xs, s; θ) = Πi∈s[π(yi,xi)fp(yi|xi; θ)/π0i].

A different approach for handling the case where the x-values are unknown
for units outside the sample, is to consider the xi as random, and model their dis-
tribution. However, modelling the distribution of concomitant variables may be
a formidable task, and the resulting likelihood function f(ys,Xs, i) involves in-
tegrals with respect to this distribution which tend to be cumbersome. Note also
that inference on θ can be sensitive to the specified model (see, e.g., Rotnitzky
and Robins (1997)).

Comment 5. Modelling the full sample distribution (the joint distribution of
the observed response and covariates values, and the selected sample) becomes
even more complicated when elements of the x vectors are missing for sample
units as well. Therefore, recent work on missing data has focused on the use of
semi-parametric regression models for estimating the parameter θ in fp(y|x; θ).
See, e.g., Rotnitzky and Robins (1997). An alternative approach proposed by
Robins (1997) is to model the response probabilities given the observed data and
use the estimated probabilities to construct Horvitz-Thompson type estimators
based on cases with complete data. This approach requires certain conditions
on the non-response mechanism. The application of both approaches is compu-
tationally intensive and is restricted to estimation problems, unlike the use of
the conditional sample distribution that we propose, derived as a product of the
marginals (3.1) or (3.3). However, the latter distribution is not operational for
inference when elements of the covariates are missing.
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4. Examples

4.1. Preface

In this section, we assume that selection to the sample is carried out with
unequal selection probabilities, independently between units. This is known as
‘Poisson sampling’ in the sampling literature (Hajek (1981), ch.6). This method
is not often used, a major reason being that the sample size is random. Never-
theless, in Section 6 we show that many of the sampling methods in common use
for selection with unequal probabilities produce asymptotically the same sample
distribution as obtained under the Poisson sampling scheme.

The common feature of the examples in Sections 4.2-4.4 is that, while the
parameters of the population pdf and the sample pdf are different as a result of
the sample selection, the two distributions are in the same family. Generalizations
of this property are considered in Section 4.5.

4.2. Logistic regression models

Let Y be a categorical response variable taking the values 0, 1, . . . , L − 1.
Let X define a set of explanatory variables and suppose that Pr(Y = �|x) can
be modeled using logistic regression such that for unit i ∈ U

Pr(Yi = �|xi) = exp(α� + x′
iβ�)/

L−1∑
j=0

exp(αj + x′
iβj), (4.1)

where α0 = 0, β0 = 0 for uniqueness. The model (4.1) defines the population
pdf, prior to sampling. Assume that the sample is selected by Poisson sampling
with probabilities Pr(Ii = 1|Yi = �,xi) = P�, � = 0, . . . , L− 1. By (3.1) and (4.1)
and after canceling

∑L−1
j=0 exp(αj + x′

iβj) in the numerator and the denominator,
the sample pdf is seen to be,

Pr(Yi = �|xi, Ii = 1)=P� exp(α� + x′
iβ�)/

L−1∑
j=0

Pj exp(αj + x′
iβj)

=exp(α∗
� + x′

iβ�)/
L−1∑
j=0

exp(α∗
j + x′

iβj), � = 0, . . . , L−1, (4.2)

where α∗
� = [log(P�/P0) + α�] so that α∗

0 = 0.
It follows from (4.2) that the sample pdf is again logistic with the same slope

coefficients as in the population pdf, but with different intercepts. Clearly, when
P� = P0 for all �, α∗

� = α�, and the population and sample pdfs coincide.

Comment 6. The distribution (4.2) does not apply to the case of retrospective
studies, in which the numbers nl of observations for which Y = � are determined
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in advance. In that case the probabilities Pr(Ii = 1|Yi = �,xi) have a rather
complicated structure that depends on all the x-values in the population. In
order to estimate the parameters of the model in such studies, Prentice and Pyke
(1979) derive the density of the covariates conditioned on the category. This
leads to a different likelihood function that involves nuisance parameters.

4.3. Linear regression models

Let the population distribution be

Yi|xi ∼ N(β0 + x′
iβ, σ2). (4.3)

Suppose that the sample inclusion probabilities have expectations

Ep(πi|yi,xi) = exp[A1yi + g(xi)] (4.4)

for some function g(x). By (3.3), (4.3) and (4.4),

fs(yi|xi) = exp(A1yi)fp(yi|xi)/
∫

exp(A1yi)fp(yi|xi)dyi

= exp(A1yi)fp(yi|xi)/ exp[A1(β0 + x′
iβ) +

1
2
A2

1σ
2]

=
1
σ

φ[(yi − (β0 + A1σ
2) − x′

iβ)/σ], (4.5)

where φ(·) is the standard normal pdf. Hence the regression of Y on x in the
sample is the same as in the population, except for the intercept term which
changes to (β0 + A1σ

2).
A special case of the model defined by (4.3) and (4.4) arises under the fol-

lowing structure,

Yi = γ0 + x′
iγ + γπ log(πi) + εi; log(πi) = α0 + x′

iα + δi, (4.6)

where εi and δi are independent normal disturbances. The model defined by (4.6),
with the right hand side equation postulated for the sample units is studied by
Skinner (1994).

An interesting extension of the relationship (4.4) is obtained by adding a
quadratic term (A2y

2
i , A2 < 0) to the right hand side equation. Simple algebra

yields
fs(yi|xi) = N [(β0 + A1σ

2 + x′
iβ)/C, σ2/C], (4.7)

where C = (1 − 2σ2A2). Thus, while the normality of the population pdf is still
preserved after sampling, the slope coefficients and the residual variance change
in this case in proportion to the fixed factor C.
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The effect of informative sampling on linear regression models is studied by
Goldberger (1981). Assuming that the X-variables are multinormally distributed
along with Y , and that the selection to the sample is “explicit on Y ”, Goldberger
shows that the vector of coefficients defining the linear regression of Y on X in
the sample is a scalar multiple of the vector of regression coefficients in the pop-
ulation. Note that under this formulation, the conditional marginal sample pdf
is not necessarily normal and in particular, the conditional expectation Es(Yi|xi)
is not necessarily linear. On the other hand, the sampling scheme studied by
Goldberger is more flexible and does not require the specification of (4.4).

4.4. Gamma models under probability proportional to size sampling

Let the population pdf be gamma with shape parameter α and mean µi so
that

fp(yi) ∝ yα−1
i exp(−αyi/µi). (4.8)

Let the sample inclusion probabilities have expectations Ep(πi|yi) ∝ yi. By
(3.3), the sample pdf of Yi is again gamma with shape parameter (α + 1) and
mean µi(α + 1)/α. This result generalizes a familiar result on sampling from a
gamma distribution with probabilities proportional to y (πi ∝ yi as opposed to
Ep(πi|yi) ∝ yi in the present case). If, following McCullagh and Nelder (1989),
ch. 8, it can be assumed that log(µi) = (β0 + x′

iβ) for given vectors xi,

Es(Yi|xi) = exp{β0 + log[(α + 1)/α] + x′
iβ}, (4.9)

implying that in this case again the slope coefficients of the sample and population
pdfs are the same.

4.5. General invariance relationships

In this section, we identify more general structures for which the population
and the sample distributions are in the same family.

Let the population pdf belong to the exponential family

fp(yi|xi;θi) = ai(θi) exp
[ K∑

k=1

θkibki(yi) + ci(yi)
]
, (4.10)

where θi = (θ1i, . . . , θKi)′ defines the natural parameterization of the family,
taking values in the parameter space Θ ⊂ RK , and bki(·) and ci(·) are known
functions. The dependence on xi operates via the parameters θki, see below.

Suppose that the sample inclusion probabilities have expectations

Ep(πi|yi,xi) = ri exp
[ K∑

k=1

dkibki(yi)
]
, (4.11)
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where ri and {dki} are constants which may depend on xi, but not on yi. The
following proposition provides a general distribution invariance property.

Proposition 1. If the population pdf of Yi belongs to the exponential family
defined by (4.10) and the sample inclusion probabilities obey (4.11), then the
sample pdf of yi belongs to the same exponential family with parameters θ∗ki =
θki + dki, (provided θ∗ lies in Θ).

The proof follows directly from (3.3).
The problem considered in this section and the result stated in Proposition 1

resemble the familiar issue of the identification of conjugate prior distributions in
Bayesian inference. Interestingly, Cox and Hinkley (1974) call the family of prior
distributions for which the posterior distributions are in the same family closed
under sampling. This terminology is perfectly suited to the present context.

The dependence on xi in the equations (4.10) and (4.11) operates in a very
general way via θki and dki respectively. This dependence may be made more ex-
plicit for a class of regression models of Y on x if the following linear relationships
are assumed,

θki = φ0k + x′
iφk; dki = Ψ0k + x′

iΨk. (4.12)

Another invariance result is obtained by taking (φ0k,φk), k = 1, . . . ,K, as pa-
rameters defining a more restricted family of population pdfs relating Yi to xi.

Corollary 1. Under the conditions of Proposition 1 and Assumption (4.12),
the sample pdf belongs to the same restricted family with φ0k and φk replaced by
(φ0k + Ψ0k) and (φk + Ψk) respectively. In particular, if the functions dki do not
depend on xi, i.e., Ψk = 0, the coefficients of xi in the natural parameterization
of the sample pdf are the same as for the population pdf.

5. Sample Distributions under More General Sampling Schemes

5.1. Selection with probabilities proportional to size

In the discussion so far, we assumed a known form for the conditional expec-
tations Ep(πi|yi,xi). This clearly need not be the case in practice, particularly
when the πi’s depend also on design variables not contained among the concomi-
tant X-variables.

The prominent advantage of the use of probability sampling is that, except
in cases of nonresponse (not considered here), the sample selection probabilities
are known. Assuming they are available to the analyst for at least the units
in the sample, the form of the expectations Ep(πi|yi,xi) can be identified and
estimated in principle from the sample data.

Suppose first that the πi’s are measures of size, regarded as continuous mea-
surements from some pdf g(π). Under some regularity conditions, the expecta-
tions Ep(πi|yi,xi) may then be approximated by low order polynomials in yi and
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the components of xi, or by exponentials of such polynomials, via the Taylor
series approximation. Thus, letting xi = (xi1, . . . , xim), for the first case

Ep(πi|yi,xi) ≈
J∑

j=0

Ajy
j
i + h(xi), (5.1)

where h(xi) =
∑m

p=1

∑K(p)
k=1 Bkpx

k
ip and {Aj} and {Bkp} are unknown parameters

to be estimated from the sample (see below). Substituting (5.1) in (3.3) and
assuming the existence of the moments E(j) = Ep(Y

j
i |xi), the sample pdf can be

approximated accordingly as

fs(yi|xi) ≈
∑J

j=1(AjE
(j))f (j)

p (yi|xi) + [A0 + h(xi)]fp(yi|xi)∑J
j=1(AjE(j)) + [A0 + h(xi)]

, (5.2)

where f
(j)
p (yi|xi) = yj

i fp(yi|xi)/E(j). It follows from (5.2) that under the approxi-
mation (5.1), the sample pdf is a mixture of the densities f

(j)
p (yi|xi), j = 0, . . . , J .

Note that changing the function h(x) to another function h∗(x) only affects the
mixture coefficients.

Comment 7. The vector parameter θ∗ indexing the sample pdf fs(yi|xi; θ∗) in
(5.2) consists of the vector parameter θ indexing fp(yi|xi; θ) and the coefficients
{Aj} and {Bkp}. Thus, the sample pdf may depend on many more parameters
than the population pdf.

Examples. Suppose there are no concomitant variables and let Ep(πi|yi) = Ayi.
Then, by (5.2), fs(yi) = yifp(yi)/Ep(Y ). In this case the sample pdf depends on
the same parameters as the population pdf. As a second example, let Ep(πi|yi) =
A0 +

∑J
j=1 Ajy

j
i and suppose that the population pdf is Gamma (α, β). In this

case,

fs(yi) =
J∑

j=0

Cj Gamma(α + j, β)/
J∑

j=0

Cj , (5.3)

where C0 = A0 and Cj = Ajα(α + 1) · · · (α + j − 1)/βj , j = 1, . . . , J . Hence
the sample pdf is a mixture of gamma densities, with shape parameters (α + j)
and a common scale parameter β. The vector parameter θ∗ contains in this case
θ = (α, β) and the mixture coefficients {Cj}. Krieger and Pfeffermann (1997) use
standard goodness of fit test statistics applied to the density (5.3) with estimated
mixture coefficients Ĉj (see below) for testing the hypothesis that the population
pdf is Gamma(α, β).

Next consider the approximation

Ep(πi|yi,xi) ≈ exp
[ J∑

j=0

Ajy
j
i + h(xi)

]
. (5.4)
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As discussed by Skinner (1994), this approximation is appealing in the common
situation where the selection to the sample is carried out in several stages so that
the ultimate inclusion probabilities are products of the selection probabilities at
the various stages. If the vectors xi contain the design variables used at the
various stages, then it is natural to express the expectations Ep(πi|yi,xi) as a
multiplicative function of yi and xi. Under (5.4),

fs(yi|xi) =
[
exp(

J∑
j=1

Ajy
j
i )

]
fp(yi|xi)/Ep

[
exp(

J∑
j=1

Ajy
j
i )|xi

]
. (5.5)

Comment 8. The pdf (5.5) does not depend on A0 and h(x). The approxi-
mation (5.4) was used for the examples in Sections 4.2-4.4 and the invariance
relationships of Section 4.5.

The disadvantage of the approximation (5.4) and the resulting representation
(5.5) is that some of the parameters of the population pdf may no longer be
identifiable from the sample observations of Y and X alone. For example, in
the linear regression case considered in Section 4.3, the population regression
intercept β0 cannot be separated from the sample regression intercept (β0 +
A1σ

2) unless the ‘sampling coefficient’ A1 is estimated separately, employing for
example the relationship (4.4), see Comment 9 below.

The identifiability problems associated with the use of the approximation
(5.4) are circumvented in general when the approximation (5.1) is used. Assum-
ing independence of the sample observations, see Section 6, the parameters of
the population pdf and the regression coefficients {Aj} and {Bkp} parameter-
izing the conditional expectations Ep(πi|yi,xi) can be estimated simultaneously
by standard techniques applied to the sample pdf (5.2). For example, Krieger
and Pfeffermann (1997) use the EM algorithm for estimating the parameters of
the sample density defined by (5.3).

Comment 9. When the number of parameters indexing the sample pdf is
large, it is often computationally much easier to estimate these parameters in two
steps. In the first step, the coefficients {Aj} and {Bkp} are estimated from the
observed probabilities πi, employing the relationships (5.1) or (5.4). In the second
step the parameters indexing the population pdf are estimated by maximum
likelihood or other standard methods, with the estimates of Aj and Bkp held fixed.
As discussed before, the use of this two step procedure may become necessary
when employing the approximation (5.4). Note that the estimation in the first
step requires the use of probability weighted regression or other methods that
account for sample selection effects, since the πi play the dual role of determining
the sample selection probabilities and the values of the regression dependent
variable. See Pfeffermann (1993) for review of several such methods and Krieger
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and Pfeffermann (1992) for an illustration of the use of this two-step estimation
procedure.

5.2. Stratified and multistage sampling designs

The discussion in Section 5.1 assumes that the conditional expectation
Ep(πi|yi,xi) is continuous in y and x which, under some regularity conditions,
permits the use of Taylor series approximations. In stratified sampling, the sam-
ple selection probabilities are constant within strata so that the approximations
(5.1) or (5.4) are no longer valid.

In Section 4.2 we consider the logistic regression example where the response
variable takes (L + 1) values which define the sample selection probabilities di-
rectly. Below we consider an example of a stratified sample with the strata
defined by the ascending values of a continuous size measure. See, for example,
Hausman and Wise (1981) and Korn and Graubard (1995) for surveys employing
such designs.

Let Zi = q(Yi,Xi,α) be a random size variable with Xi either random or
fixed, where q is of known form and α represents a fixed (but possibly unknown)
vector of parameters. Let a(0) < a(1) < · · · < a(L) define L percentiles of the
distribution of Z with a(0) = −∞ and a(L) = ∞. These percentiles define a
division of the population values into L strata, U1, . . . , UL, of sizes N1, . . . , NL,
based on the realized values z1, . . . , zN . The division is such that unit i belongs
to stratum U� iff a(�−1) ≤ zi ≤ a(�). Assuming simple random stratified sampling
with sample sizes n� = N�P�, � = 1, . . . , L, where the P�’s are fixed proportions,
the sample pdf of Yi|xi is in this case

fs(yi|xi) =




P1fp(yi|xi)/w if zi ≤ a(1)

P2fp(yi|xi)/w if a(1) < zi ≤ a(2)

...
PLfp(yi|xi)/w if a(L−1) < zi,

(5.6)

where w = Pr(Ii = 1|xi) =
∑L

�=1[P�

∫ a(�)

a(�−1) fp(z|xi)dz]. Hausman and Wise
(1981) and Krieger and Pfeffermann (1992) study maximum likelihood estimation
of the parameters θ indexing the pdf fp(yi|xi, θ) under this sampling design, for
the case where (Yi,Xi) is multivariate normal and the function q is linear. The
difference between the two studies is in the assumptions regarding the knowledge
of the P�’s or a(�)’s.

Another family of sampling designs in common use is hierarchical multistage
designs in which each stage, except the last, involves the selection of clusters
that are nested within clusters selected in the previous stage. In a typical two
stage cluster sample for example, with C clusters and Nc units within cluster
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c, the clusters are selected with probabilities proportional to a size measure Z,
whereas selection within the clusters is with equal probabilities. The sample
sizes within the clusters are usually determined in such a way that the ultimate
sample inclusion probabilities are constant across the population, ensuring that
the sampling scheme is ‘self-weighting’.

Despite the self-weighting property of the sample, the sample distribution
may still be different in such cases from the population distribution, as illustrated
by the following simple example. Let the population model be

Yci = x′
ciβ + γZc + eci; Zc ∼ Gamma(α, β) , eci ∼ N(0, σ2

� ) c=1,...,C
i=1,...,Nc

(5.7)

and suppose that the clusters are selected with probabilities πc such that Ep(πc|Zc)
= A0 + A1Zc. For example, Yci may represent the salary of employee i working
for establishment c of a certain branch, xci may represent personal characteristics
(profile), and Zc the size of the corresponding establishment as measured by the
total number of employees. It follows that

fs(zc) = (A0 + A1zc) Gamma(α, β)/[A0 + A1Ep(Zc)] (5.8)

which, by (5.3), is a mixture of Gamma densities. Thus the distribution of
the sample observations of Z, and hence of Y , is different in this case from
the population distribution despite the self-weighting property of the sample.
This follows from the fact that even though the inclusion probabilities πci =
Pr(ci ∈ S) are constant, Pr(ci ∈ S|yci,xci) depends on yci and hence fp(yci|xci) �=
fs(yci|xci). This example illustrates that when deriving the sample distribution
under multistage sampling designs, it might be necessary to model the conditional
expectations of the sample selection probabilities at each stage of the selection
process, and not just model the ultimate inclusion probabilities.

6. Independence of Sample Measurements under Common Sampling
Schemes

6.1. Theoretical results

Having derived the marginal sample distribution, the question that arises
is whether under commonly used sampling methods the sample measurements
are approximately independent. This question is fundamental as many of the
standard inference procedures assume independence of the observations like, for
example, (classical) likelihood-based inference by which the sample likelihood is
computed as a product of the marginal densities. The examples of Section 4, and
the more general formulation in Section 5, assume, at least implicitly, that selec-
tion to the sample is carried out independently using Poisson sampling. Under
this sampling scheme it is clear that when the population values are independent,
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so are the sample values. Common sampling methods for selection with unequal
probabilities involve, however, joint selection of the sampling units such that the
second and higher order joint selection probabilities are no longer simple prod-
ucts of the corresponding first order selection probabilities. Also, the selection
probabilities ordinarily depend on the population means of the design variables.
When the latter are regarded as random, it introduces another source of ‘sample
dependence’.

In the Appendix we prove the following asymptotic independence theorem
related to PPS sampling with replacement. The same independence property
holds for various sampling schemes of selection without replacement via a similar
proof. The implications of these results to cluster sampling are discussed at the
end of this section. As before, for convenience, we suppress parameter symbols
from the various densities. Also, equalities and inequalities related to conditional
densities or expectations are assumed to hold a.s.

Let Z = {Z1, . . . , ZN} consist of independent realizations of a positive ran-
dom size variable Z. Suppose that a sample S of fixed size n is selected with
replacement with probabilities proportional to Z: on each draw, unit j is drawn
with probability Pj = Zj/(NZ̄), j = 1, . . . , N , where Z̄ = 1

N

∑N
i=1 Zi. Let

(Yi,Xi) define a random response variable and random concomitant variables
respectively associated with unit i, i = 1, . . . , N .

Consider the following conditions:
(a) Pr(Zi ≥ 0) = 1; E(Zk

i ) < ∞ for k = 1, 2, . . ., and f(z|X) = ΠN
i=1f(zi|Xi)

where X = [X1, . . . ,XN ].
(b) For each m ≥ 1, there exists K = Km such that E( K

Z1+···+ZK
)m < ∞.

(c) fp(y|X,Z) = ΠN
i=1fp(yi|Xi, Zi) and fp(yi|Xi, Zi) < B for some B, all i, yi,

and for (Xi, Zi) in a set having probability 1.
(d) E(Zi|Xi) > c for some c > 0, and E(Z2

i |Xi) < B for some B.
Let Xs = {Xi, i ∈ S}, Ys = {Yi, i ∈ S} and let f(ys|Xs, s) denote the

conditional density of the Y values for units in the sample.

Theorem 1. (i) If S consists of n distinct units, then under Conditions (a)-(d),
as N → ∞ (with n fixed),

fs(ys|Xs) = f(ys|Xs, s) =
Πi∈SE(Zi|yi,Xi)fp(yi|Xi)

Πi∈SE(Zi|Xi)
+ O(

1
N1/2

), (6.1)

where the expectations in the numerator and the denominator are with respect to
the conditional distributions of Zi|Yi,Xi and Zi|Xi, respectively.

(ii) When S contains repetitions with multiplicities τi, such that
∑

i∈S∗ τi = n

where S∗ consists of the distinct elements in S, then under Conditions (a)-(d),

fs(ys|Xs) =
Πi∈S∗E(Zτi

i |yi,Xi)fp(yi|Xi)
Πi∈SE(Zi|Xi)

+ O(
1

N1/2
). (6.2)
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The terms O(N−1/2) in (6.1) and (6.2) depend on n and the bounds on the
moments defined under the conditions (a)-(d), but not on S and Xs.

Comment 10. The sample densities E(Zi|yi,Xi)fp(yi|Xi)/E(Zi|Xi) in the right
hand side of (6.1) correspond to the marginal sample pdfs defined by (3.3) with
πi in (3.3) replaced by Zi/[NEp(Z)] in the numerator and the denominator of
(6.1).

Examination of the conditions (a)-(d) reveals that they are not very restric-
tive. Sampling with replacement is often applied in practice because it permits
simple variance estimators. Furthermore, once the asymptotic independence of
the sample measurements under PPS sampling with replacement is established,
it allows us to derive the relationship (6.1) for the following sampling schemes
without replacement. See the Appendix for details.

A - Successive Sampling. Draw one unit each time with replacement, with prob-
abilities Pj = Zj/NZ̄, until n distinct units have been selected (Hajek (1981),
Ch. 9). This sampling scheme is equivalent to drawing the units in succession
without replacement, such that on the (r + 1)st draw, the selection probability
for unit i, not previously selected, is P (i ∈ S) = Zi/

∑N
j �∈Sr

Zj with Sr denoting
the units selected on the first r draws.

B - Rejective Sampling. Draw one unit each time with replacement, with prob-
abilities proportional to αi = Pi/(1 − Pi) but reject the sample already selected
(and hence start the whole sampling process again) if a repetition occurs. This
sampling scheme is equivalent to the use of Poisson sampling conditional on
having n distinct units (Hajek (1981), Ch. 7).

C - Sampford’s Method. Draw the first unit with probabilities Pi and the remain-
ing (n−1) units with probabilities proportional to Pj/(1−nPj), with replacement.
As in B, a sample is rejected once a unit is selected twice, in which case the whole
sampling process is started again (Hajek (1981), Ch. 8).

The results stated so far and proved in the Appendix assume that the popu-
lation measurements are generated independently. This assumption is violated in
clustered populations where measurements within the same cluster are ordinar-
ily correlated. When fitting models to clustered populations, it is customary to
assume independent cluster effects (possibly represented by an observable vari-
able), and independent residuals given the cluster effects. See, for example, the
model defined by (5.7) in Section 5.2.

It follows that if the clusters and ultimate sampling units are selected by one
of the methods considered in this section (see next section for simulation results
for other methods), the cluster effects corresponding to the sampled clusters are
asymptotically independent and so are the unit level residuals. Thus, the model
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holding for the sample has the same form as the population model, and it can
be extracted, in principle, and used for inference.

6.2. Simulation study

In order to illustrate the theoretical results of Section 6.1 and examine the in-
dependence of the sample measurements for other sampling methods in common
use, we performed a simulation study to compare the empirical distribution of
various sample statistics under the different sampling methods with the distribu-
tion of the same statistics under independent sampling from the marginal sample
distribution(3.3). Among the statistics considered is the “product likelihood”,
defined as the product of the corresponding marginals. If the distribution of the
product likelihood under the various sampling methods is close to its distribution
under independent sampling (in which case it is the true likelihood), it suggests
that the sample measurements as obtained under these methods are approxi-
mately independent, and hence inference based on independence assumptions is
justified.

The simulation study consists of several steps. In Steps I-III data were
generated according to models corresponding to some of the examples in this
paper, while in Step IV independent observations were generated according to
the product of the marginals as in (3.1) or (3.3). (See below for details.) Steps I-
IV were repeated R times. In Step V we use these simulations to study the sample
distributions of the statistics considered in order to assess the independence of
the sample measurements under the various sampling methods.

Step I. Generate N independent population measurements {Y1, . . . , YN} from
pdf fp(y|x) with the x-values generated from Gamma(αx, βx). This was done
in two different ways: I1 - logistic distribution, i.e., P (Yi = j|xi) = exp(aj +
bjxi)/

∑L−1
�=0 exp(a� + b�xi), i = 1, . . . , N , j = 0, . . . , (L − 1); I2 - Normal distri-

bution, i.e., Yi = a + bxi + εi, εi ∼ N(0, σ2
ε ), i = 1, . . . , N .

Step II. Generate population values for a design variable Zi = h(Yi, ui) where
the {ui} are random. The Z values were generated in two different ways: II1 -
Zi = B0 + B1Yi + ui, ui ∼ Gamma(αu, βu); II2 - Zi = exp(B∗

0 + B∗
1Yi + u∗

i ),
u∗

i ∼ Gamma(α∗
u, β∗

u), i = 1, . . . , N .
Defining the size variable as a direct function of the response variable is

clearly an extreme case of informative sampling. Note that I and II define four
different combinations of population distributions and design size variables.

Step III. Select PPS samples of size n with Z as the size variable using seven
different sampling methods (one sample per population × method) as follows:

III1 - Sampford’s method (method C in Section 6.1); III2 - Chao’s (1982)
method; III3 - Rejective sampling (method B in Section 6.1); III4 - Successive
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sampling (method A in Section 6.1); III5 - Systematic PPS sampling (Hajek
(1981), Ch. 10); III6 - PPS sampling with replacement; III8 - Simple random
sampling without replacement.

Methods III1, III3, III4 and III6 are covered by Theorem 1 and Corollary 1
of the Appendix. Method III8 is used as a benchmark for assessing the sampling
effects on the distribution of the sample measurements.

Step IV. Generate n independent values from the marginal sample pdf defined
by (3.3) with fp(y|x) as in I and πi ∝ Zi. Measurements for the four marginal
sample distributions corresponding to the two population distributions defined
in I, and the two design variables defined in II, were obtained in two stages.
In the first stage values (y, x) were generated from the population distribution
fp(y, x) = fp(y|x)fp(x) and the x-values selected to the sample with probability
π = Z/NZ̄ , where Z is defined as in Step II above and Z̄ is the corresponding
mean of the population Z-values obtained in Step II. This process was repeated
independently until n sample values, x1, . . . , xn were obtained. Note that the
yi’s were only generated in order to enable us to generate the Z-values needed
for computing the π’s. In the second stage values yi, i = 1, . . . , n, were generated
independently from the corresponding marginal sample pdf as obtained from
(3.3). The four sample pdfs are defined below where we use the notation (Ia, IIb),
a, b = 1, 2 to denote the population pdf defined by Ia (Step I) and the design
variable defined by IIb (Step II).

Case 1: (I1, II1), Pr(Yi = j|xi, i ∈ s) = exp(ãj + bjxi)/
∑L−1

�=0 exp(ã� + b�xi),
where ãj = {aj + ln[B1j + B0 + E(ui)]}, j = 0, . . . , (L − 1).

Case 2: (I1, II2), Pr(Yi = j|xi, i ∈ s) = exp(a∗j + bjxi)/
∑L−1

�=0 exp(a∗� + b�xi),
where a∗j = (aj + B∗

1j), j = 0, . . . , (L − 1).

Case 3: (I2, II1), fs(yi|xi) = [B̃0fp(yi|xi) + B1(a + bxi)f
(1)
p (yi|xi)]/[B̃0 + B1(a +

bxi)] where fp(yi|xi) = N(a + bxi, σ
2
ε ), f

(1)
p (yi|xi) = yifp(yi|xi)/(a + bxi) and

B̃0 = B0 + E(ui).

Case 4: (I2, II2), fs(yi|xi) = N(a + B∗
1σ2

ε + bxi, σ
2
ε ), (see Example 4.3).

Step V. Compute the empirical deciles of each of eight different sample statistics
as obtained under Steps I - III for the seven sampling methods listed in Step III,
and compare them with the empirical deciles obtained in step IV.

6.3. Results

The results obtained for the various statistics are very similar, therefore
we restrict attention to the comparison of the “product likelihood” statistics,
computed as the product of the marginal densities (3.3) as defined for Cases 1-4
in Section 6.2.
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Figure 1. Empirical deciles and mean value of LOG-LIKELIHOOD under
different sampling schemes and IID sampling from sample distribution.
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Figure 2. Empirical deciles and mean value of LOG-LIKELIHOOD under
different sampling schemes and IID sampling from sample distribution.
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Figure 3. Empirical deciles and mean value of LOG-LIKELIHOOD under
different sampling schemes and IID sampling from sample distribution.
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Figure 4. Empirical deciles and mean value of LOG-LIKELIHOOD under
different sampling schemes and IID sampling from sample distribution.
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Figures 1-4 display the empirical deciles of the loglikelihood as obtained for
each sampling method under the two population distributions and the two design
variables. When simulating from the logistic distribution we set L = 4, so there
are four levels for the response variable. The deciles were computed based on
R = 300 simulations with populations of size N = 1000 and samples of size
n = 100. Also shown on the figures are the mean values of the loglikelihood over
the 300 samples, and the mean population correlation, CORR(Y, PAI), between
the response y and the selection probabilities π. The numbers in the legend of
each graph correspond to the numbers defining the various sampling methods
in the description of Step III. Method 7 is the independent selections from the
marginal sample distribution and Method 8 is simple random sampling without
replacement.

The graphs indicate that the six sampling methods 1-6 for selection with
unequal probabilities yield very similar deciles, despite the relatively large sam-
pling fraction, n/N = 0.1. These deciles are indeed similar to the deciles obtained
under independent drawing from the marginal sample distribution (Method 7),
suggesting that the sample measurements obtained under the six sampling meth-
ods are not dependent in a way that significantly affects the distribution of the
loglikelihood.

It should be emphasized that the two design variables considered in this
study define extreme cases of informative sampling. This can be inferred from
the high correlations between the response variable and the selection probabil-
ities, (CORR(Y,PAI)), and by comparison of the deciles obtained under the
first seven sampling methods with the deciles obtained under simple random
sampling. (Notice in particular Figures 1 and 2 for the logistic model.) The
results of the simulation study suggest therefore that whereas ignoring the sam-
pling mechanism in the inference process (i.e., assuming simple random sampling)
may be very misleading, basing the inference on the marginal sample distribu-
tion, assuming independence of the sample measurements, appears to be a sound
procedure.

7. Summary

In this article, we show how the distribution holding for the sample mea-
surements may be derived from the distribution holding in the population and
the first order selection probabilities for units in the sample. Theoretical and
simulation results indicate that for large populations and small sampling frac-
tions, when the population values are independent so are, asymptotically, the
sample values, even when employing sampling methods that involve joint selec-
tion of the sample units. Extracting the sample distribution as proposed here
has the advantage of permitting the use of classical inference tools, without the
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need to condition on the population values of design variables that determine the
selection probabilities. As discussed in Section 2, the latter may not be possible
because of data availability or may not be of scientific interest.

In the approach considered in this article, the sample selection probabilities
for units in the sample are only used for modeling the expectations Ep(πi|yi,xi).
It could be argued that a more explicit use of these probabilities would increase
the efficiency of the inference process. This could be done in principle by consid-
ering the joint sample distribution of (Yi, πi)|Xi, i.e.,

fs(yi, πi|xi) = f(yi, πi|xi, i ∈ s) =
πifp(πi|yi,xi)fp(yi|xi)
EYi|xi

[Ep(πi|yi,xi)]
. (7.1)

Unlike the sample pdf defined by (3.3), which only requires the specification of
the expectations Ep(πi|yi,xi), the use of (7.1) requires the specification of the
full pdf fp(πi|yi,xi). This is in general much more complicated.

The next obvious step in this research is the application of the proposed
approach to real data sets. The most interesting and important question in this
respect is the modeling of the expectations Ep(πi|yi,xi) and the sensitivity of the
resulting sample distribution to the model specification. Work in this direction
is currently in progress.
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Appendix

A. Proof of Theorem 1

We need several simple lemmas for the proof.

Lemma 1. For any m > 0, there exists Dm < ∞ such that for N ≥ Km,
E(1/Z̄m) < Dm.

Proof. It suffices to show that for k ≥ Km, E[(k + 1)/(Z1 + · · · + Zk+1)]m ≤
E[k/(Z1 + · · · + Zk)]m. The latter inequality follows from the relation E((Z1 +
· · · + Zk)/k |Z1 + · · · + Zk+1) = (Z1 + · · · + Zk+1)/(k + 1), and from Jensen’s
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inequality applied to the convex function g(x) = 1/xm, yielding

Eg
(Z1 + · · · + Zk+1

k + 1

)
= Eg

(
E[

Z1 + · · · + Zk

k
|Z1 + · · · + Zk+1]

)

≤ E
{
E[g(

Z1 + · · · + Zk

k
) |Z1 + · · · + Zk+1]

}

= Eg
(Z1 + · · · + Zk

k

)
.

Lemma 2. Let µ =EZi. For any fixed n, As N → ∞, E[ 1
Z̄n − 1

µn ]2 = O( 1
N ).

Proof. By the Cauchy-Schwarz inequality

E
[ 1
Z̄n

− 1
µn

]2
= E

( Z̄n − µn

Z̄nµn

)2 ≤
(
E

1
Z̄4nµ4n

E(Z̄n − µn)4
)1/2

.

By Lemma 1, E[1/(Z̄4nµ4n)] is bounded. Write (Z̄n−µn)4 as a product of (Z̄−µ)4

and (Z̄n−1 + Z̄n−2µ + · · · + µn−1)4, and note that the second expression has a
finite second moment. Also note that for i.i.d. random variables Zi satisfying
EZ2k

i < ∞, E(Z̄ −µ)2k = O( 1
Nk ). The latter property (with k = 4) and another

application of the Cauchy-Schwarz inequality yields the desired result.

Lemma 3. As N → ∞, E(
∏

i∈S Zi(| 1
Z̄n − 1

µn |) | Xs) = O( 1
N1/2 ).

Proof. Suppose for notational convenience that S = {1, . . . , n}. By Jensen’s
inequality, the positivity of the Zi’s and the last part of Assumption (a), we have

E
(E(Z1|X1) + · · · + E(Zn|Xn)

N
+

Zn+1 + · · · + ZN

N

)−n

≤ E(Z̄−n|Xs) ≤ E
(Zn+1 + · · · + ZN

N

)−n
.

It is easy to see that both the left hand side and the right hand side of the latter
relation are within O( 1

N ) of E( 1
Z̄n ). The Cauchy-Schwarz inequality, and Lemma

2 now imply the result.

Proof of Theorem 1. Let Z = {Z1, . . . , ZN}. By Bayes’ theorem

f(ys|Xs, s) =
∫

f(ys|Xs, s,Z) Pr(S|Xs, Z)dF (Z|Xs)∫
Pr(S|Xs, Z)dF (Z|Xs)

. (A.1)

Next note that for PPS sampling with replacement with Z as the size vari-
able,

Pr(S|Xs,Z) = Pr(S|Z) =
∏
i∈S

(Zi/NZ̄), (A.2)
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where the sample S is viewed as a multiset, so that repetitions are taken into
account if they occur. By Condition (c), if S has n distinct elements,

f(ys|Xs, s,Z) =
∏
i∈S

fp(yi|Xi, Zi). (A.3)

Hence, by Lemma 3, Condition (a) and the boundedness of fp(yi|Xi, Zi) (Con-
dition (c)), we have that the numerator of (A.1) equals 1

Nn {∏i∈S E[fp(yi|Xi, Zi)
Zi
µ |Xi]+O( 1

N1/2 )}. In the same way, the denominator of (A.1) equals 1
Nn {∏i∈S

E[Zi
µ |Xi] + O( 1

N1/2 )}. Since by Condition (d), E(Zi|Xi) > c, it follows that

f(ys|Xs, s) =
∏

i∈S E[fp(yi|Xi, Zi)Zi|Xi]∏
i∈S E(Zi|Xi)

+ O(
1

N1/2
), (A.4)

from which the relationship (6.1) of Theorem 1 follows straightforwardly. The
relationship (6.2) corresponding to the case where S contains repetitions is ob-
tained in the same way, thus completing the proof.

B. Asymptotic Sample Independence under Successive and Rejective
Sampling

In Section 6.1 we describe three sampling methods of selection without re-
placement labeled as A, B and C. Under successive sampling (method A), the
probability of drawing a given sample S of size n, conditioned on the vector Z

is,

Pr(S|Z) = (
∏
i∈S

Pi)
∑

r1,...,rn

[(1 − Pr1) · · · (1 − Pr1 − · · · − Prn−1)]
−1, (B.1)

where Pi = Zi/NZ̄ and the summation is over all permutations of members of S

(Hajek (1981), Ch. 9).
Under Rejective sampling (method B), the probability of obtaining a sample

S of size n is given by

Pr(S|Z) = c
∏
i∈S

Pi/(1 − Pi), (B.2)

where c is the normalizing constant (Hajek (1981), Ch. 7).
Under Sampford’s sampling scheme (method C),

Pr(S|Z) = (P1 · · ·Pn)[1 − (P1 + · · · + Pn)]/[(1 − nP1) · · · (1 − nPn)]. (B.3)

In view of (B.1), (B.2) and (B.3), the result of Theorem 1 can be extended as
follows.
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Corollary 1. The relationship (6.1) holds for successive and rejective sam-
pling under the same conditions (a)-(d). It holds also for Sampford’s method if
E(etZi |Xi) < B < ∞ for some B, t > 0.

Proof. We provide the details of the proof for Sampford’s method; the other
two cases being simpler or similar. Note that for all three sampling schemes S

contains n distinct elements.
Let Gs denote the set {Z : 1

1−nPi
< 1 + 1

N1/2 , Pi < 1
N1/2 ; i ∈ S}. It is easy

to see from (B.3) that for Z ∈ Gs

Pr(S|Z) = (P1 · · ·Pn)[1 + O(
1

N1/2
)]. (B.4)

We first show that for every sample S and sufficiently large N , Pr(Gs|Xs) ≥
(1 − 1

N ). The notation below suppresses the conditioning on Xs, however, all
probabilities and expectations are conditioned on Xs. Note that the left hand
side condition in Gs implies the second. Therefore, it suffices to prove that for
large N , Pr( 1

1−nPi
< 1 + 1

N1/2 ) ≥ 1 − ( 1
N ). Indeed, direct calculations show that

for large N ,

Pr
( 1
1 − nPi

< 1 +
1

N1/2

)
≥ Pr

( N∑
j=1

Zj > N3/4Zi

)
≥ 1 − 1

N
, (B.5)

where the second inequality follows from standard large deviation (or Bernstein)
bounds, (see the proof at the end of this Appendix).

We now derive the relationship (6.1). By (B.4) and (B.5), the numerator of
(A.1) can be written as

E
∏
i∈S

{
fp(yi|Xi, Zi)

Zi

NZ̄

}[
1+O(

1
N1/2

)
]
IGs+E

∏
i∈S

{fp(yi|Xi, Zi)}P (S|Z)(1−IGs)

= E
∏
i∈S

{
fp(yi|Xi, Zi)

Zi

NZ̄

}[
1 + O(

1
N1/2

)
]

+E
{
−

∏
i∈S

{fp(yi|Xi, Zi)
Zi

NZ̄
}[1+O(

1
N1/2

)]+
∏
i∈S

{fp(yi|Xi, Zi)}P (S|Z)
}
(1−IGs),

where IGs denotes the indicator of the set Gs, and all expectations are taken with
respect to Z, conditioned on Xs. By the boundedness of fp(yi|Xi, Zi) and the
result that 1 − Pr(Gs) = O( 1

N ), we obtain by a standard Cauchy-Schwarz argu-
ment that the numerator of (A.1) equals E

∏
i∈S{fp(yi|Xi, Zi) Zi

NZ̄
}[1 + O( 1

N1/2 )].
A similar (but easier) calculation shows that the denominator of (A1) equals
E

∏
i∈S{ Zi

NZ̄
}[1+ O( 1

N1/2 )]. Application of Lemmas 1-3 (which do not depend on
the sampling plan) yields the relationship (6.1).
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Finally, we show that Pr(
∑N

j=1 Zj < N3/4Zi) ≤ 1
N , proving the right hand

side inequality in (B.5). In fact, here we derive a stronger result: the right
hand side bound can be shown to be of order e−cN1/4

for some positive constant
c. Bernstein’s type inequality for i.i.d. variables Ui with EUi < 0 states that
Pr(

∑N
i=1 Ui > Nε) ≤ e−Nεt for some t > 0.

Now, Pr(N3/4Zi > Nδ) = Pr(etZi > etδN1/4
) ≤ EetZi/etδN1/4

= O(e−tδN1/4
)

since E(etZi |Xi) is assumed to be bounded. Applying this relationship with
ε < EZi, we obtain Pr(−∑N

j=1 Zj > −N3/4Zi) = Pr(−∑N
j=1 Zj + Nε > Nε −

N3/4Zi) ≤ O(e−tδN1/4
) + Pr(−∑N

j=1 Zj + Nε > N(ε − δ)) ≤ O(e−δtN1/4
) +

e−N(ε−δ)t; the latter inequality follows from the Bernstein inequality, with Ui =
−(Zi − ε) and δ < ε.
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