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Description
pca and pcamat display the eigenvalues and eigenvectors from the principal component analysis

(PCA) eigen decomposition. The eigenvectors are returned in orthonormal form, that is, uncorrelated and

normalized.

pca can be used to reduce the number of variables or to learn about the underlying structure of the

data. For pca, the correlation or covariance matrix is computed from the variables in varlist. For pcamat,
you must specify the correlation or covariance matrix.

Quick start
Principal component analysis of data

Principal component analysis of v1, v2, v3, and v4
pca v1 v2 v3 v4

Same as above, but retain only 2 components

pca v1 v2 v3 v4, components(2)

Same as above, but retain only those components with eigenvalues greater than or equal to 0.5

pca v1 v2 v3 v4, mineigen(.5)

Principal component analysis of covariance matrix instead of correlation matrix

pca v1 v2 v3 v4, covariance

Principal component analysis of a correlation matrix

Principal component analysis of matrix C representing the correlations from 1,000 observations

pcamat C, n(1000)

Same as above, but retain only 4 components

pcamat C, n(1000) components(4)

Menu
pca
Statistics > Multivariate analysis > Factor and principal component analysis > Principal component analysis (PCA)

pcamat
Statistics > Multivariate analysis > Factor and principal component analysis > PCA of a correlation or covariance
matrix
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https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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Syntax
Principal component analysis of data

pca varlist [ if ] [ in ] [weight ] [ , options ]

Principal component analysis of a correlation or covariance matrix

pcamat matname, n(#) [ options pcamat options ]

matname is a 𝑘 × 𝑘 symmetric matrix or a 𝑘(𝑘 + 1)/2 long row or column vector containing the upper

or lower triangle of the correlation or covariance matrix.

options Description

Model 2

components(#) retain maximum of # principal components; factors() is a synonym
mineigen(#) retain eigenvalues larger than #; default is 1e-5
correlation perform PCA of the correlation matrix; the default

covariance perform PCA of the covariance matrix

vce(none) do not compute VCE of the eigenvalues and vectors; the default

vce(normal) compute VCE of the eigenvalues and vectors assuming multivariate
normality

Reporting

level(#) set confidence level; default is level(95)
blanks(#) display loadings as blanks when |loadings| < #

novce suppress display of SEs even though calculated
∗ means display summary statistics of variables

Advanced

tol(#) advanced option; see Options for details

ignore advanced option; see Options for details

norotated display unrotated results, even if rotated results are available (replay only)

∗ means is not allowed with pcamat.
norotated is not shown in the dialog box.

pcamat options Description

Model

shape(full) matname is a square symmetric matrix; the default

shape(lower) matname is a vector with the rowwise lower triangle (with diagonal)

shape(upper) matname is a vector with the rowwise upper triangle (with diagonal)

names(namelist) variable names; required if matname is triangular

forcepsd modifies matname to be positive semidefinite
∗ n(#) number of observations

sds(matname2) vector with standard deviations of variables

means(matname3) vector with means of variables

∗ n() is required for pcamat.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/mvpca.pdf#mvpcaSyntaxweight
https://www.stata.com/manuals/mvpca.pdf#mvpcaSyntaxoptions
https://www.stata.com/manuals/mvpca.pdf#mvpcaSyntaxoptions
https://www.stata.com/manuals/mvpca.pdf#mvpcaSyntaxpcamat_options
https://www.stata.com/manuals/mvpca.pdf#mvpcaOptionsoptions_advanced
https://www.stata.com/manuals/mvpca.pdf#mvpcaOptionsoptions_advanced
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bootstrap, by, collect, jackknife, rolling, statsby, and xi are allowed with pca; see [U] 11.1.10 Prefix commands.
However, bootstrap and jackknife results should be interpreted with caution; identification of the pca parameters
involves data-dependent restrictions, possibly leading to badly biased and overdispersed estimates (Milan and Whittaker
1995).

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed with pca; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model 2 �

components(#) and mineigen(#) specify the maximum number of components (eigenvectors or fac-

tors) to be retained. components() specifies the number directly, and mineigen() specifies it indi-
rectly, keeping all components with eigenvalues greater than the indicated value. The options can be

specified individually, together, or not at all. factors() is a synonym for components().

components(#) sets the maximum number of components (factors) to be retained. pca and pcamat
always display the full set of eigenvalues but display eigenvectors only for retained components.

Specifying a number larger than the number of variables in varlist is equivalent to specifying the

number of variables in varlist and is the default.

mineigen(#) sets the minimum value of eigenvalues to be retained. The default is 1e-5 or the value
of tol() if specified.

Specifying components() and mineigen() affects only the number of components to be displayed
and stored in e(); it does not enforce the assumption that the other eigenvalues are 0. In particular,
the standard errors reported when vce(normal) is specified do not depend on the number of retained
components.

correlation and covariance specify that principal components be calculated for the correlation ma-
trix and covariance matrix, respectively. The default is correlation. Unlike factor analysis, PCA
is not scale invariant; the eigenvalues and eigenvectors of a covariance matrix differ from those of

the associated correlation matrix. Usually, a PCA of a covariance matrix is meaningful only if the

variables are expressed in the same units.

For pcamat, do not confuse the type of thematrix to be analyzedwith the type ofmatname. Obviously,

if matname is a correlation matrix and the option sds() is not specified, it is not possible to perform
a PCA of the covariance matrix.

vce(none | normal) specifies whether standard errors are to be computed for the eigenvalues, the eigen-
vectors, and the (cumulative) percentage of explained variance (confirmatory PCA). These standard

errors are obtained assuming multivariate normality of the data and are valid only for a PCA of a

covariance matrix. Be cautious if applying these to correlation matrices.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

level() is allowed only with vce(normal).

blanks(#) shows blanks for loadings with absolute value smaller than #. This option is ignored when

specified with vce(normal).

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u20.pdf#u20.8Specifyingthewidthofconfidenceintervals
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novce suppresses the display of standard errors, even though they are computed, and displays the

PCA results in a matrix/table style. You can specify novce during estimation in combination with

vce(normal). More likely, you will want to use novce during replay.

means displays summary statistics of the variables over the estimation sample. This option is not avail-

able with pcamat.

� � �
Advanced �

tol(#) is an advanced, rarely used option and is available only with vce(normal). An eigenvalue, ev𝑖,

is classified as being close to zero if ev𝑖 < tol×max(ev). Two eigenvalues, ev1 and ev2, are “close”

if abs(ev1 − ev2) < tol × max(ev). The default is tol(1e-5). See option ignore below and the

technical note later in this entry.

ignore is an advanced, rarely used option and is available only with vce(normal). It continues the
computation of standard errors and tests, even if some eigenvalues are suspiciously close to zero or

suspiciously close to other eigenvalues, violating crucial assumptions of the asymptotic theory used

to estimate standard errors and tests. See the technical note later in this entry.

The following option is available with pca and pcamat but is not shown in the dialog box:

norotated displays the unrotated principal components, even if rotated components are available. This
option may be specified only when replaying results.

Options unique to pcamat

� � �
Model �

shape(shape arg) specifies the shape (storage mode) for the covariance or correlation matrixmatname.

The following shapes are supported:

full specifies that the correlation or covariance structure of 𝑘 variables is stored as a symmetric 𝑘×𝑘
matrix. Specifying shape(full) is optional in this case.

lower specifies that the correlation or covariance structure of 𝑘 variables is stored as a vector with

𝑘(𝑘 + 1)/2 elements in rowwise lower-triangular order:

C11 C21 C22 C31 C32 C33 . . . C𝑘1 C𝑘2 . . . C𝑘𝑘

upper specifies that the correlation or covariance structure of 𝑘 variables is stored as a vector with

𝑘(𝑘 + 1)/2 elements in rowwise upper-triangular order:

C11 C12 C13 . . . C1𝑘 C22 C23 . . .C2𝑘 . . . C(𝑘−1𝑘−1) C(𝑘−1𝑘) C𝑘𝑘

names(namelist) specifies a list of 𝑘 different names, which are used to document output and to label

estimation results and are used as variable names by predict. By default, pcamat verifies that the

row and column names of matname and the column or row names of matname2 and matname3 from

the sds() and means() options are in agreement. Using the names() option turns off this check.

forcepsdmodifies the matrixmatname to be positive semidefinite (psd) and so to be a proper covariance

matrix. Ifmatname is not positive semidefinite, it will have negative eigenvalues. By setting negative

eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation

to matname. This approximation is a singular covariance matrix.

https://www.stata.com/manuals/mvpca.pdf#mvpcaRemarksandexamplestechnote
https://www.stata.com/manuals/mvpca.pdf#mvpcaRemarksandexamplestechnote
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n(#) is required and specifies the number of observations.

sds(matname2) specifies a 𝑘×1 or 1×𝑘 matrix with the standard deviations of the variables. The row

or column names should match the variable names, unless the names() option is specified. sds()
may be specified only if matname is a correlation matrix.

means(matname3) specifies a 𝑘×1 or 1×𝑘 matrix with the means of the variables. The row or column

names should match the variable names, unless the names() option is specified. Specify means() if
you have variables in your dataset and want to use predict after pcamat.

Remarks and examples
Principal component analysis (PCA) is commonly thought of as a statistical technique for data reduc-

tion. It helps you reduce the number of variables in an analysis by describing a series of uncorrelated

linear combinations of the variables that contain most of the variance. In addition to data reduction, the

eigenvectors from a PCA are often inspected to learn more about the underlying structure of the data.

PCA originated with the work of Pearson (1901) and Hotelling (1933). For an introduction, see van

Belle, Fisher, Heagerty, and Lumley (2004) or Afifi et al. (2020). More advanced treatments are Mardia,

Kent, and Taylor (2024, chap. 9), and Rencher and Christensen (2012, chap. 12). For monograph-sized

treatments, including extensive discussions of the relationship between PCA and related approaches, see

Jackson (2003) and Jolliffe (2002).

The objective of PCA is to find unit-length (L′L = I) linear combinations of the variables with the

greatest variance. The first principal component has maximal overall variance. The second principal

component has maximal variance among all unit-length linear combinations that are uncorrelated to

the first principal component, etc. The last principal component has the smallest variance among all

unit-length linear combinations of the variables. All principal components combined contain the same

information as the original variables, but the important information is partitioned over the components

in a particular way: the components are orthogonal, and earlier components contain more information

than later components. PCA thus conceived is just a linear transformation of the data. It does not assume

that the data satisfy a specific statistical model, though it does require that the data be interval-level

data—otherwise taking linear combinations is meaningless.

PCA is scale dependent. The principal components of a covariance matrix and those of a correlation

matrix are different. In applied research, PCA of a covariance matrix is useful only if the variables are

expressed in commensurable units.

Technical note
Principal components have several useful properties. Some of these are geometric. Both the principal

components and the principal scores are uncorrelated (orthogonal) among each other. The 𝑓 leading

principal components have maximal generalized variance among all 𝑓 unit-length linear combinations.
It is also possible to interpret PCA as a fixed-effects factor analysis with homoskedastic residuals

𝑦𝑖𝑗 = a′
𝑖b𝑗 + 𝑒𝑖𝑗 𝑖 = 1, . . . , 𝑛 𝑗 = 1, . . . , 𝑝

where 𝑦𝑖𝑗 are the elements of the matrixY, a𝑖 (scores) and b𝑗 (loadings) are 𝑓-vectors of parameters, and
𝑒𝑖𝑗 are independent homoskedastic residuals. (In factor analysis, the scores a𝑖 are random rather than

fixed, and the residuals are allowed to be heteroskedastic in 𝑗.) It follows that 𝐸(Y) is a matrix of rank
𝑓, with 𝑓 typically substantially less than 𝑛 or 𝑝. Thus we may think of PCA as a regression model with a
restricted number but unknown independent variables. We may also say that the expected values of the

rows (or columns) of Y are in some unknown 𝑓-dimensional space.
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For more information on these properties and for other characterizations of PCA, see Jackson (2003)

and Jolliffe (2002).

Example 1: Principal component analysis of audiometric data
We consider a dataset of audiometric measurements on 100 males, age 39. The measurements are

minimal discernible intensities at four different frequencies with the left and right ear (see Jackson 2003,

106). The variable lft1000 refers to the left ear at 1,000 Hz.

. use https://www.stata-press.com/data/r19/audiometric
(Audiometric measures)
. correlate lft* rght*
(obs=100)

lft500 lft1000 lft2000 lft4000 rght500 rght1000 rght2000

lft500 1.0000
lft1000 0.7775 1.0000
lft2000 0.4012 0.5366 1.0000
lft4000 0.2554 0.2749 0.4250 1.0000
rght500 0.6963 0.5515 0.2391 0.1790 1.0000

rght1000 0.6416 0.7070 0.4460 0.2632 0.6634 1.0000
rght2000 0.2372 0.3597 0.7011 0.3165 0.1589 0.4142 1.0000
rght4000 0.2041 0.2169 0.3262 0.7097 0.1321 0.2201 0.3746

rght4000

rght4000 1.0000

As you may have expected, measurements on the same ear are more highly correlated than measure-

ments on different ears. Also, measurements on different ears at the same frequency are more highly

correlated than at different frequencies. Because the variables are in commensurable units, it would

make theoretical sense to analyze the covariance matrix of these variables. However, the variances of

the measures differ widely:

. summarize lft* rght*, sep(4)
Variable Obs Mean Std. dev. Min Max

lft500 100 -2.8 6.408643 -10 15
lft1000 100 -.5 7.571211 -10 20
lft2000 100 2 10.94061 -10 45
lft4000 100 21.35 19.61569 -10 70

rght500 100 -2.6 7.123726 -10 25
rght1000 100 -.7 6.396811 -10 20
rght2000 100 1.6 9.289942 -10 35
rght4000 100 21.35 19.33039 -10 75

In an analysis of the covariances, the higher frequency measures would dominate the results. There is

no clinical reason for such an effect (see also Jackson [2003]). Therefore, we will analyze the correlation

matrix.
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. pca lft* rght*
Principal components/correlation Number of obs = 100

Number of comp. = 8
Trace = 8

Rotation: (unrotated = principal) Rho = 1.0000

Component Eigenvalue Difference Proportion Cumulative

Comp1 3.92901 2.31068 0.4911 0.4911
Comp2 1.61832 .642997 0.2023 0.6934
Comp3 .975325 .508543 0.1219 0.8153
Comp4 .466782 .126692 0.0583 0.8737
Comp5 .34009 .0241988 0.0425 0.9162
Comp6 .315891 .11578 0.0395 0.9557
Comp7 .200111 .0456375 0.0250 0.9807
Comp8 .154474 . 0.0193 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Comp3 Comp4 Comp5 Comp6

lft500 0.4011 -0.3170 0.1582 -0.3278 0.0231 0.4459
lft1000 0.4210 -0.2255 -0.0520 -0.4816 -0.3792 -0.0675
lft2000 0.3664 0.2386 -0.4703 -0.2824 0.4392 -0.0638
lft4000 0.2809 0.4742 0.4295 -0.1611 0.3503 -0.4169
rght500 0.3433 -0.3860 0.2593 0.4876 0.4975 0.1948

rght1000 0.4114 -0.2318 -0.0289 0.3723 -0.3513 -0.6136
rght2000 0.3115 0.3171 -0.5629 0.3914 -0.1108 0.2650
rght4000 0.2542 0.5135 0.4262 0.1591 -0.3960 0.3660

Variable Comp7 Comp8 Unexplained

lft500 0.3293 -0.5463 0
lft1000 -0.0331 0.6227 0
lft2000 -0.5255 -0.1863 0
lft4000 0.4269 0.0839 0
rght500 -0.1594 0.3425 0

rght1000 -0.0837 -0.3614 0
rght2000 0.4778 0.1466 0
rght4000 -0.4139 -0.0508 0

pca shows two panels. The first panel lists the eigenvalues of the correlation matrix, ordered from

largest to smallest. The corresponding eigenvectors are listed in the second panel. These are the principal

components and have unit length; the columnwise sum of the squares of the loadings is 1 (0.40112 +
0.42102 + · · · + 0.25422 = 1).

Remark: Literature and software that treat principal components in combination with factor analysis

tend to display principal components normed to the associated eigenvalues rather than to 1. This nor-

malization is available in the postestimation command estat loadings; see [MV] pca postestimation.

The eigenvalues add up to the sum of the variances of the variables in the analysis—the “total vari-

ance” of the variables. Because we are analyzing a correlation matrix, the variables are standardized to

have unit variance, so the total variance is 8. The eigenvalues are the variances of the principal compo-

nents. The first principal component has variance 3.93, explaining 49% (3.93/8) of the total variance.

The second principal component has variance 1.62 or 20% (1.62/8) of the total variance. Principal com-

ponents are uncorrelated. You may want to verify that; for instance,

https://www.stata.com/manuals/mvpcapostestimation.pdf#mvpcapostestimation


pca — Principal component analysis 8

0.4011(−0.3170) + 0.4210(−0.2255) + · · · + 0.2542(0.5135) = 0

As a consequence, we may also say that the first two principal components explain the sum of the

variances of the individual components, or 49 + 20 = 69% of the total variance. Had the components

been correlated, they would have partly represented the same information, so the information contained

in the combination would not have been equal to the sum of the information of the components. All eight

principal components combined explain all variance in all variables; therefore, the unexplained variances

listed in the second panel are all zero, and Rho = 1.00 as shown above the first panel.

More than 85% of the variance is contained in the first four principal components. We can list just

these components with the option components(4).

. pca lft* rght*, components(4)
Principal components/correlation Number of obs = 100

Number of comp. = 4
Trace = 8

Rotation: (unrotated = principal) Rho = 0.8737

Component Eigenvalue Difference Proportion Cumulative

Comp1 3.92901 2.31068 0.4911 0.4911
Comp2 1.61832 .642997 0.2023 0.6934
Comp3 .975325 .508543 0.1219 0.8153
Comp4 .466782 .126692 0.0583 0.8737
Comp5 .34009 .0241988 0.0425 0.9162
Comp6 .315891 .11578 0.0395 0.9557
Comp7 .200111 .0456375 0.0250 0.9807
Comp8 .154474 . 0.0193 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Comp3 Comp4 Unexplained

lft500 0.4011 -0.3170 0.1582 -0.3278 .1308
lft1000 0.4210 -0.2255 -0.0520 -0.4816 .1105
lft2000 0.3664 0.2386 -0.4703 -0.2824 .1275
lft4000 0.2809 0.4742 0.4295 -0.1611 .1342
rght500 0.3433 -0.3860 0.2593 0.4876 .1194

rght1000 0.4114 -0.2318 -0.0289 0.3723 .1825
rght2000 0.3115 0.3171 -0.5629 0.3914 .07537
rght4000 0.2542 0.5135 0.4262 0.1591 .1303

The first panel is not affected. The second panel now lists the first four principal components. These

four components do not contain all information in the data, and therefore some of the variances in the

variables are unaccounted for or unexplained. These equal the sums of squares of the loadings in the

deleted components, weighted by the associated eigenvalues. The unexplained variances in all variables

are of similar order. The average unexplained variance is equal to the overall unexplained variance of

13% (1 − 0.87).

Look more closely at the principal components. The first component has positive loadings of roughly

equal size on all variables. It can be interpreted as overall sensitivity of a person’s ears. The second

principal component has positive loadings on the higher frequencies with both ears and negative load-

ings for the lower frequencies. Thus the second principal component distinguishes sensitivity for higher

frequencies versus lower frequencies. The third principal component similarly differentiates sensitivity
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at medium frequencies from sensitivity at other frequencies. Finally, the fourth principal component has

negative loadings on the left ear and positive loadings on the right ear; it differentiates the left and right

ear.

We stated earlier that the first principal component had similar loadings on all eight variables. This

can be tested if we are willing to assume that the data are multivariate normal distributed. For this case,

pca can estimate the standard errors and related statistics. To conserve paper, we request only the results
of the first two principal components and specify the option vce(normal).

. pca l* r*, comp(2) vce(normal)
(with PCA/correlation, SEs and tests are approximate)
Principal components/correlation Number of obs = 100

Number of comp. = 2
Trace = 8
Rho = 0.6934

SEs assume multivariate normality SE(Rho) = 0.0273

Coefficient Std. err. z P>|z| [95% conf. interval]

Eigenvalues
Comp1 3.929005 .5556453 7.07 0.000 2.839961 5.01805
Comp2 1.618322 .2288653 7.07 0.000 1.169754 2.066889

Comp1
lft500 .4010948 .0429963 9.33 0.000 .3168236 .485366

lft1000 .4209908 .0359372 11.71 0.000 .3505551 .4914264
lft2000 .3663748 .0463297 7.91 0.000 .2755702 .4571794
lft4000 .2808559 .0626577 4.48 0.000 .1580491 .4036628
rght500 .343251 .0528285 6.50 0.000 .2397091 .446793

rght1000 .4114209 .0374312 10.99 0.000 .3380571 .4847846
rght2000 .3115483 .0551475 5.65 0.000 .2034612 .4196354
rght4000 .2542212 .066068 3.85 0.000 .1247303 .3837121

Comp2
lft500 -.3169638 .067871 -4.67 0.000 -.4499885 -.1839391

lft1000 -.225464 .0669887 -3.37 0.001 -.3567595 -.0941686
lft2000 .2385933 .1079073 2.21 0.027 .0270989 .4500877
lft4000 .4741545 .0967918 4.90 0.000 .284446 .6638629
rght500 -.3860197 .0803155 -4.81 0.000 -.5434352 -.2286042

rght1000 -.2317725 .0674639 -3.44 0.001 -.3639994 -.0995456
rght2000 .317059 .1215412 2.61 0.009 .0788427 .5552752
rght4000 .5135121 .0951842 5.39 0.000 .3269544 .7000697

LR test for independence: chi2(28) = 448.21 Prob > chi2 = 0.0000
LR test for sphericity: chi2(35) = 451.11 Prob > chi2 = 0.0000
Explained variance by components

Components Eigenvalue Proportion SE_Prop Cumulative SE_Cum Bias

Comp1 3.929005 0.4911 0.0394 0.4911 0.0394 .056663
Comp2 1.618322 0.2023 0.0271 0.6934 0.0273 .015812
Comp3 .9753248 0.1219 0.0178 0.8153 0.0175 -.014322
Comp4 .4667822 0.0583 0.0090 0.8737 0.0127 .007304
Comp5 .34009 0.0425 0.0066 0.9162 0.0092 .026307
Comp6 .3158912 0.0395 0.0062 0.9557 0.0055 -.057717
Comp7 .2001111 0.0250 0.0040 0.9807 0.0031 -.013961
Comp8 .1544736 0.0193 0.0031 1.0000 0.0000 -.020087
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Here pca acts like an estimation command. The output is organized in different equations. The first

equation contains the eigenvalues. The second equation named, Comp1, is the first principal component,
etc. pca reports, for instance, standard errors of the eigenvalues. Although testing the values of eigen-

values may, up to now, be rare in applied research, interpretation of results should take stability into

consideration. It makes little sense to report the first eigenvalue as 3.929 if you see that the standard

error is 0.56.

pca has also reported the standard errors of the principal components. It has also estimated the co-

variances.

. estat vce
(output omitted )

Showing the large amount of information contained in the VCE matrix is not useful by itself. The

fact that it has been estimated, however, enables us to test properties of the principal components. Does

it make good sense to talk about the loadings of the first principal component being of the same size?

We use testparm with two options; see [R] test. eq(Comp1) specifies that we are testing coefficients

for equation Comp1, that is, the first principal component. equal specifies that instead of testing that

the coefficients are zero, we want to test that the coefficients are equal to each other—a more sensible

hypothesis because principal components are normalized to 1.

. testparm lft* rght*, equal eq(Comp1)
( 1) - [Comp1]lft500 + [Comp1]lft1000 = 0
( 2) - [Comp1]lft500 + [Comp1]lft2000 = 0
( 3) - [Comp1]lft500 + [Comp1]lft4000 = 0
( 4) - [Comp1]lft500 + [Comp1]rght500 = 0
( 5) - [Comp1]lft500 + [Comp1]rght1000 = 0
( 6) - [Comp1]lft500 + [Comp1]rght2000 = 0
( 7) - [Comp1]lft500 + [Comp1]rght4000 = 0

chi2( 7) = 7.56
Prob > chi2 = 0.3729

We cannot reject the null hypothesis of equal loadings, so our interpretation of the first component

does not seem to conflict with the data.

pca also displays standard errors of the proportions of variance explained by the leading principal

components. Again this information is useful primarily to indicate the strength of formulations of results

rather than to test hypotheses about these statistics. The information is also useful to compare studies:

if in one study the leading two principal components explain 70% of variance, whereas in a replicating

study they explain 80%, are these differences significant given the sampling variation?

Because pca is an estimation command just like regress or xtlogit, you may replay the output by
typing just pca. If you have used pca with the vce(normal) option, you may use the option novce at

estimation or during replay to display the standard PCA output.

https://www.stata.com/manuals/rtest.pdf#rtest
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. pca, novce
Principal components/correlation Number of obs = 100

Number of comp. = 2
Trace = 8

Rotation: (unrotated = principal) Rho = 0.6934

Component Eigenvalue Difference Proportion Cumulative

Comp1 3.92901 2.31068 0.4911 0.4911
Comp2 1.61832 .642997 0.2023 0.6934
Comp3 .975325 .508543 0.1219 0.8153
Comp4 .466782 .126692 0.0583 0.8737
Comp5 .34009 .0241988 0.0425 0.9162
Comp6 .315891 .11578 0.0395 0.9557
Comp7 .200111 .0456375 0.0250 0.9807
Comp8 .154474 . 0.0193 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Unexplained

lft500 0.4011 -0.3170 .2053
lft1000 0.4210 -0.2255 .2214
lft2000 0.3664 0.2386 .3805
lft4000 0.2809 0.4742 .3262
rght500 0.3433 -0.3860 .2959

rght1000 0.4114 -0.2318 .248
rght2000 0.3115 0.3171 .456
rght4000 0.2542 0.5135 .3193

Technical note
Inference on the eigenvalues and eigenvectors of a covariance matrix is based on a series of assump-

tions:

(A1) The variables are multivariate normal distributed.

(A2) The variance–covariance matrix of the observations has all distinct and strictly positive eigenval-

ues.

Under assumptions A1 and A2, the eigenvalues and eigenvectors of the sample covariance matrix

can be seen as maximum likelihood estimates for the population analogues that are asymptotically (mul-

tivariate) normally distributed (Anderson 1963; Jackson 2003). See Tyler (1981) for related results for

elliptic distributions. Be cautious when interpreting because the asymptotic variances are rather sensitive

to violations of assumption A1 (and A2). Wald tests of hypotheses that are in conflict with assumption

A2 (for example, testing that the first and second eigenvalues are the same) produce incorrect 𝑝-values.
Because the statistical theory for a PCA of a correlation matrix is much more complicated, pca and

pcamat compute standard errors and tests of a correlation matrix as if it were a covariance matrix. This
practice is in line with the application of asymptotic theory in Jackson (2003). This will usually lead

to some underestimation of standard errors, but we believe that this problem is smaller than the conse-

quences of deviations from normality.

You may conduct tests for multivariate normality using the mvtest normality command (see

[MV] mvtest normality):

https://www.stata.com/manuals/mvmvtestnormality.pdf#mvmvtestnormality
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. mvtest normality lft* rght*, stats(all)
Test for multivariate normality

Mardia mSkewness = 14.52785 chi2(120) = 251.052 Prob>chi2 = 0.0000
Mardia mKurtosis = 94.53331 chi2(1) = 33.003 Prob>chi2 = 0.0000
Henze-Zirkler = 1.272529 chi2(1) = 118.563 Prob>chi2 = 0.0000
Doornik-Hansen chi2(16) = 95.318 Prob>chi2 = 0.0000

These tests cast serious doubt on the multivariate normality of the variables. We advise caution in

interpreting the inference results. Time permitting, you may want to turn to bootstrap methods for infer-

ence on the principal components and eigenvalues, but you should be aware of some serious identification

problems in using the bootstrap here (Milan and Whittaker 1995).

Example 2: Analyzing the covariance instead of the correlation
We remarked before that the principal components of a correlation matrix are generally different from

the principal components of a covariance matrix. pca defaults to performing the PCA of the correlation

matrix. To obtain a PCA of the covariance matrix, specify the covariance option.

. pca l* r*, comp(4) covariance
Principal components/covariance Number of obs = 100

Number of comp. = 4
Trace = 1154.5

Rotation: (unrotated = principal) Rho = 0.9396

Component Eigenvalue Difference Proportion Cumulative

Comp1 706.795 527.076 0.6122 0.6122
Comp2 179.719 68.3524 0.1557 0.7679
Comp3 111.366 24.5162 0.0965 0.8643
Comp4 86.8501 57.4842 0.0752 0.9396
Comp5 29.366 9.53428 0.0254 0.9650
Comp6 19.8317 6.67383 0.0172 0.9822
Comp7 13.1578 5.74352 0.0114 0.9936
Comp8 7.41432 . 0.0064 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Comp3 Comp4 Unexplained

lft500 0.0835 0.2936 -0.0105 0.3837 7.85
lft1000 0.1091 0.3982 0.0111 0.3162 11.71
lft2000 0.2223 0.5578 0.0558 -0.4474 11.13
lft4000 0.6782 -0.1163 -0.7116 -0.0728 .4024
rght500 0.0662 0.2779 -0.0226 0.4951 12.42

rght1000 0.0891 0.3119 0.0268 0.2758 11.14
rght2000 0.1707 0.3745 0.2721 -0.4496 14.71
rght4000 0.6560 -0.3403 0.6441 0.1550 .4087

As expected, the results are less clear. The total variance to be analyzed is 1,154.5; this is the sum

of the variances of the eight variables, that is, the trace of the covariance matrix. The leading principal

components now account for a larger fraction of the variance; this is often the case with covariance

matrices where the variables have widely different variances. The principal components are somewhat

harder to interpret; mainly the loadings are no longer of roughly comparable size.
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Example 3: PCA directly from a correlation matrix
Sometimes you do not have the original data but have only the correlation or covariance matrix.

pcamat performs a PCA for such a matrix. To simplify presentation, we use the data on the left ear.

. correlate lft*, cov
(obs=100)

lft500 lft1000 lft2000 lft4000

lft500 41.0707
lft1000 37.7273 57.3232
lft2000 28.1313 44.4444 119.697
lft4000 32.101 40.8333 91.2121 384.775

Suppose that we have the covariances of the variables but not the original data. correlate stores the
covariances in r(C), so we can use that matrix and invoke pcamat with the options n(100), specifying
the number of observations, and names(), providing the variable names.

. matrix Cfull = r(C)

. pcamat Cfull, comp(2) n(100) names(lft500 lft1000 lft2000 lft4000)
Principal components/correlation Number of obs = 100

Number of comp. = 2
Trace = 4

Rotation: (unrotated = principal) Rho = 0.8169

Component Eigenvalue Difference Proportion Cumulative

Comp1 2.37181 1.47588 0.5930 0.5930
Comp2 .895925 .366238 0.2240 0.8169
Comp3 .529687 .327106 0.1324 0.9494
Comp4 .202581 . 0.0506 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Unexplained

lft500 0.5384 -0.4319 .1453
lft1000 0.5730 -0.3499 .1116
lft2000 0.4958 0.2955 .3387
lft4000 0.3687 0.7770 .1367

If we had to type in the covariance matrix, to avoid excess typing pcamat allows you to provide the

covariance (or correlation) matrix with just the upper or lower triangular elements including the diagonal.

(Thus, for correlations, you have to enter the 1s for the diagonal.) For example, we could enter the lower

triangle of our covariance matrix row by row up to and including the diagonal as a one-row Stata matrix.

. matrix Clow = (41.0707, 37.7273, 57.3232, 28.1313, 44.4444,
> 119.697, 32.101, 40.8333, 91.2121, 384.775)

The matrix Clow has one row and 10 columns. To make seeing the structure easier, we prefer to enter

these numbers in the following way:

. matrix Clow = (41.0707,
> 37.7273, 57.3232,
> 28.1313, 44.4444, 119.697,
> 32.101, 40.8333, 91.2121, 384.775)



pca — Principal component analysis 14

When using the lower or upper triangle stored in a row or column vector, it is not possible to define the

variable names as row or column names of the matrix; the option names() is required. Moreover, we

have to specify the option shape(lower) to inform pcamat that the vector contains the lower triangle,

not the upper triangle.

. pcamat Clow, comp(2) shape(lower) n(100) names(lft500 lft1000 lft2000 lft4000)
(output omitted )

Stored results
pca and pcamat without the vce(normal) option store the following in e():

Scalars

e(N) number of observations

e(f) number of retained components

e(rho) fraction of explained variance

e(trace) trace of e(C)
e(lndet) ln of the determinant of e(C)
e(cond) condition number of e(C)

Macros

e(cmd) pca (even for pcamat)
e(cmdline) command as typed

e(Ctype) correlation or covariance
e(wtype) weight type

e(wexp) weight expression

e(title) title in output

e(properties) nob noV eigen
e(rotate cmd) program used to implement rotate
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(C) 𝑝 × 𝑝 correlation or covariance matrix

e(means) 1 × 𝑝 matrix of means

e(sds) 1 × 𝑝 matrix of standard deviations

e(Ev) 1 × 𝑝 matrix of eigenvalues (sorted)

e(L) 𝑝 × 𝑓 matrix of eigenvectors = components

e(Psi) 1 × 𝑝 matrix of unexplained variance

e(components) 𝑝 × 4 matrix with statistics on components

Functions

e(sample) marks estimation sample
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pca and pcamat with the vce(normal) option store the above, as well as the following:

Scalars

e(v rho) variance of e(rho)
e(chi2 i) 𝜒2 statistic for test of independence

e(df i) degrees of freedom for test of independence

e(p i) 𝑝-value for test of independence
e(chi2 s) 𝜒2 statistic for test of sphericity

e(df s) degrees of freedom for test of sphericity

e(p s) 𝑝-value for test of sphericity
e(rank) rank of e(V)

Macros

e(vce) multivariate normality
e(properties) b V eigen

Matrices

e(b) 1 × 𝑝 + 𝑓𝑝 coefficient vector (all eigenvalues and retained eigenvectors)

e(Ev bias) 1 × 𝑝 matrix: bias of eigenvalues

e(Ev stats) 𝑝 × 5 matrix with statistics on explained variance

e(Ev se) 𝑝 × 2 matrix with statistics on SEs

e(V) variance–covariance matrix of the estimates e(b)

Methods and formulas
Methods and formulas are presented under the following headings:

Notation
Inference on eigenvalues and eigenvectors
More general tests for multivariate normal distributions

Notation
LetC be the 𝑝×𝑝 correlation or covariancematrix to be analyzed. The spectral or eigen decomposition

of C is

C = V𝚲V′ =
𝑝

∑
𝑖=1

𝜆𝑖v𝑖v
′
𝑖

v′
𝑖v𝑗 = 𝛿𝑖𝑗 (that is, orthonormality)

𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑝 ≥ 0

The eigenvectors v𝑖 are also known as the principal components. The direction (sign) of principal

components is not defined. pca returns principal components signed so that 1′v𝑖 > 0. In PCA, “total

variance” equals trace(C) = ∑ 𝜆𝑗.

Inference on eigenvalues and eigenvectors

The asymptotic distribution of the eigenvectors v̂𝑖 and eigenvalues �̂�𝑖 of a covariance matrix S for

a sample from a multivariate normal distribution 𝑁(𝜇, 𝚺) was derived by Girshick (1939); for more
results, see also Anderson (1963) and Jackson (2003). Higher-order expansions are discussed in Lawley

(1956). See Tyler (1981) for related results for elliptic distributions. The theory of the exact distribution

is rather complicated (Muirhead 1982, chap. 9) and hard to implement. If we assume that eigenvalues

of 𝚺 are distinct and strictly positive, the eigenvalues and eigenvectors of S are jointly asymptotically

multivariate normal distributed with the following moments (up to order 𝑛−3):
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𝐸(�̂�𝑖) = 𝜆𝑖 {1 + 1
𝑛

𝑘
∑
𝑗≠𝑖

(
𝜆𝑗

𝜆𝑖 − 𝜆𝑗
)} + 𝑂(𝑛−3)

Var(�̂�𝑖) = 2𝜆2
𝑖

𝑛
{1 − 1

𝑛

𝑘
∑
𝑗≠𝑖

(
𝜆𝑗

𝜆𝑖 − 𝜆𝑗
)

2

} + 𝑂(𝑛−3)

Cov(�̂�𝑖, �̂�𝑗) = 2
𝑛2 (

𝜆𝑖𝜆𝑗

𝜆𝑖 − 𝜆𝑗
)

2

+ 𝑂(𝑛−3)

Var(v̂𝑖) = 1
𝑛

𝑘
∑
𝑗≠𝑖

𝜆𝑖𝜆𝑗

(𝜆𝑖 − 𝜆𝑗)2 v𝑗v
′
𝑗

Cov(v̂𝑖, v̂𝑗) = − 1
𝑛

𝜆𝑖𝜆𝑗

(𝜆𝑖 − 𝜆𝑗)2 v𝑖v
′
𝑗

For the asymptotic theory of the cumulative proportion of variance explained, see Kshirsagar (1972,

454).

More general tests for multivariate normal distributions
The likelihood-ratio 𝜒2 test of independence (Basilevsky 1994, 187) is

𝜒2 = − (𝑛 − 2𝑝 + 5
6

) ln{det(C)}

with 𝑝(𝑝 − 1)/2 degrees of freedom.
The likelihood-ratio 𝜒2 test of sphericity (Basilevsky 1994, 192) is

𝜒2 = − (𝑛 − 2𝑝2 + 𝑝 + 2
6𝑝

) [ ln{det(�̃�)} − 𝑝 ln{ trace(�̃�)
𝑝

}]

with (𝑝 + 2)(𝑝 − 1)/2 degrees of freedom and with �̃� the eigenvalues of the correlation matrix.
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