
Chapter 6 
Thermodynamic Properties Of Fluids 

 
In this chapter: 
 

1. Develop fundamental property relations for fluids. (based on the 1-st & 2nd 
laws). 

2. Use these relations to derive equations to calculate enthalpy and entropy 
values from PVT data and heat capacity data. 

3. Calculate actual property values, by introducing Residual properties and 
learn how to estimate it by equation of state. 

4. Explain the criteria of phase equilibria for a pure substances and its 
utilization in the Clapeyron equation. 

5. Follow this by discussion of the most common used diagrams and tables in 
thermodynamic. 

 
 
6.1 Property Relations For Homogenous Phases 
 

• For n moles, 1-st law of closed system is 
                                                                        d(nU) = dQ + dW                       (2.6) 
 For reversible process, 2-nd law 

                                                                              dQrev =  T dSt                                           (5.12) 
 And                                                           dWrev = -P d(nV)                        (1.2) 
 Substitute back, 
                                                                             d(nU) = Td(nS) – Pd(nV)            (6.1) 

Equation 6.1:  
1. based on the combination of 1-st and 2-nd laws. 
2. Good for closed system (constant mass). 
3. Applicable to reversible as well as to irreversible process.  

 
• Define additional thermodynamic properties: 
 

Enthalpy                                         H = U + PV                                          (2.11) 
 
The Helmholtz free energy            A = U – T S                                           (6.2) 
 
The Gibbs free energy                   G = H – T S                                            (6.3) 
 
 
 
 
 

• For one mole (or a unit mass) of a homogenous fluid of constant composition, 
 

Fundamental property relations for a closed system 



 
 

dU = TdS – PdV            (6.7) 
 

dH = TdS + V dP          (6.8) 
 

dA = - P dV – S dT       (6.9) 
 

 dG = V dP – S dT          (6.10)
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• The criterion of exactness for a differential expression: 
 
If                                                     F = F (x,y) 



 
The differential of F      dF = (δF/δx)y dx + (δF/δy)x dy 
 
Let                                 M = (δF/δx)y          and         N = (δF/δy)x 
 
Then                              dF = M dx + N dy                                                      (6.11) 
 
By further differentiation,    
                                          
                                    (δM/δy)x = δ2F/δx δy     and       (δN/δx)y = δ2F/δy δx 
 
Since the order of differentiation is immaterial, then 
 
                                             (δM/δy)x = (δN/δx)y                                            (6.12)      
 
Thus, do the same thing for the total differential equations 6.7 – 6.10:                                                   
 

 
Maxwell’s equations 

 
 

(δT/δV)S = - (δP/δS)V            (6.13)
 

(δT/δP)S =  (δV/δS)P            (6.14) 
 

(δP/δT)V =  (δS/δV)T            (6.15) 
 

(δV/δT)P = - (δS/δP)T            (6.16)

 
 
 

  تحفظ
 
 
 
 
 
 
 

 
1- TV, PS (Horiz. +), (Vert. -) 
2- The opposite. 

 
 

T = V         P = S 
P     S         T    V 

 
T = - P        V = -  S 
V      S         T       P



Enthalpy and Entropy as Function of T & P 
 

• Most useful equations of H and S result when these properties expressed as 
function of T and P. 

 
• How H and S are vary with T and P? 

Or what is (δH/δT)P ,  (δS/δT)P , (δH/δP)T and  (δS/δP)T  ? 
 

• The aim is to express  H=H(T,P)    and  S=S(T,P) 
 

Find           dH = (δH/δT)P dT +  (δH/δP)T dP 
And            dS =  (δS/δT)P dT +  (δS/δP)T dP 
 
We know that         (δH/δT)P = CP                                                                                                    (2.20) 
 
And from equation 6.8, dH = TdS + V dP 
 
Dividing by dT and keeping P constant, gives  
 
                                      (δH/δP)T = T (δS/δT)P 
Combine with equation 2.20, 
                                       

  (δS/δT)P  = CP / T                                                     (6.17) 
 
From 6.16 (Maxwell), 
   (δS/δP)T = - (δV/δT)P                                                  (6.18) 
 
Divide 6.8 by dP while keeping T constant 
 

(δH/δP)T = T (δS/δP)T + V 
From 6.18 it becomes, 

(δH/δP)T = V – T (δV/δT)P                                         (6.19) 
Substitute for the partial derivatives, 
 
             (6.20) dH = CP dT + [V- T (δV/δT)P ] dP 
 
and  
                                                      (6.21)                                                  dS = CP dT/T - (δV/δT)P dP



The Ideal-Gas State 
 

PVig = RT 
 

 
 
 

(δV/δT)P = R/P 

 Substitute into 6.20, 
                

dH
ig

 = CP
ig

 dT + [Vig- T R/P] dP 
 Or 
                                                             (6.23) dH

ig
= CP

ig
dT

 
 Substitute into 6.21, 

                                         
dS

ig
 = CP

ig
 dT/T – R/P dP (6.24) 

  
 
Same equations were developed for dH (2.6) and dS (5.18) of ideal gas. 
 
 
Example 1: 
 
Prove that (δH/δP)T =0 
Or 
Prove that enthalpy is not function of pressure for an ideal gas. 

 
Example 2: 
 
Prove that (δS/δP)T =0 
Or 
Prove that entropy is not function of pressure for an ideal gas. 
 



Alternative Forms for Liquids 
 
Express 6.18 and 6.19 in terms of the volume expansivity β, recall from 3.2 that 
 

β = 1/V (δv/δT)P 
Rewrite 6.18. 
  
                                           (6.25) (δS/δP)T = - (δV/δT)P = - βV 
 
And 6.19, 
 
                              (6.26)  (δH/δP)T = V – T (δV/δT)P  = V – βTV 
 
The partial change of internal energy with pressure is obtained as follows, 
 

    U = H – PV 
 Differentiate with P at constant T, 
 
            (δU/δP)T = (δH/δP)T – P (δV/δT)P  - V 
 
 Since Isothermal compressibility,      κ = -1/V (δv/δp)T                              (3.3) 
 From 6.25, 
   (δU/δP)T = (κT- βT)                                                           (6.27) 
  

Equations 6.25 through 6.27 applies only for liquids. 
 
Replacing (δV/δT)P in 6.20 and 6.21 yields, 
 
                                         (6.28) dH = CP dT + V (1 – βT) dP 
 

 
                                              (6.29)               dS = CP dT/T - βV dP

  
Both and V are weak function of P and can be considered constants at an average 
value of integration of the last term of the above two equations. 
 
 
Read Example 6.1 
 
 
 
 
 
 
 
 



The Gibbs Energy as a Generating Function 
 

dG = V dP – S dT          (6.10) 
 
G = G (P,T). Both P and T can be directly measured and controlled. G a property 
of interest and important. 
 
It is more convenient to deal with a dimensionless for of 6.10.  
 
                                         (6.37) d(G/RT) = V/RT dP – H/RT2 dT 
 
Advantages of this equation: All terms are dimensionless. Moreover, in contrast 
to 6.10, enthalpy rather than entropy appears on the right side. 
 
6.10 and 6.37 are too general for direct practical application, then at constant T 
 

                            (6.38) V/RT = [δ(G/RT) / δ P]
T
 

 
 
And at constant P, 
 
 
                                                (6.39) H/RT = -T [δ(G/RT) / δ T]

P
 

 
 
 
Thus, if (G/RT) is known as function of T and P, then V/RT and H/RT can be 
determined by simple differentiation. The remaining properties are given by 
defining equations. For example, 
 
                      S/R = H/RT – G/RT                  and               U/RT = H/RT – PV/RT 
 
The Gibbs energy when given as a function of T and P serves as a generating 
function for the other thermodynamic properties. 
 
 
 
 
 
 
 
 
 
 
 

 



 
6.2 Residual Properties 
 

• Is the difference between a certain thermodynamic property in the ideal gas 
state and its value in the real gas state both at the same T and P. 

 
The residual Gibbs energy is:           GR = G – Gig 
 
In a similar fashion other properties can be defined, 
 

VR = V – Vig 
           = V – RT/P 
But V = ZRT/P, Then 
     VR = RT/P(Z-1)                                 (6.40) 
In general, 

MR = M – Mig 
Where M is the molar value of any extensive thermodynamic property, V, H, U, 
S, A or G. 
 

• Now rewrite 6.37 for an ideal gas 
 

d(Gig/RT) = Vig/RT dP – Hig/RT2 dT 
 Subtract fro 6.37 

         (6.42) 
 
d(GR/RT) = VR/RT dP – HR/RT2 dT

This Fundamental residual property relation applies to fluid of constant 
composition. 

                                                                                                                                                                              
                                                           (6.43) 
                                                                                                     

VR/RT = [δ(GR/RT) / δ P]
T
 

 
                                    (6.44) HR/RT = -T [δ(GR/RT) / δ T]

P
 

 
 
In addition, G = H – TS  and for an ideal gas   Gig = Hig – TSig   by the difference, 
  

      GR = HR – TSR   
 Then the residual entropy, 
          SR/R = HR /RT – GR /RT    (6.47) 

Thus, the residual Gibbs energy serves as a generating function for the other 
thermodynamic properties. 

 
 
 
 
 



 
 

• However, equation 6.43 provide a direct link with experimental data  
 

d(GR/RT) = VR/RT dP   (constant T) 
 Integrate from P = 0 to P (arbitrary value) 

GR/RT = VR/RT dP   (constant T) ∫
P

0

 From 6.40      VR = RT/P(Z-1) 

GR/RT = (Z-1) dP/P   (constant T)          (6.49) ∫
P

0

 Differentiating with respect to T in accordance to 6.44 
 
 
                            (6.46) HR/RT = -T (δΖ / δT)

 P
 (dP/P)     (constant T) ∫

P

0 
 

Combine 6.46 and 6.49 into 6.47, yields 
 
 
                              
           (6.48) T (δΖ / δT)

 P
 (dP/P) -  (Z-1) dP/P        (constant T) ∫

P

0
∫
P

0
SR/R = -

 
 
 Importance of residual property: 

o Z = PV/ RT 
o Z and may be calculated from PVT data. 
o The two integrals evaluated by numerical or 

graphical methods. Alternatively, they may be 
evaluated analytically if Z expressed by equation of 
state. 

 
Enthalpy and Entropy from Residual Properties 

 
HR = H – Hig                      SR = S – Sig 

 H and S from integration of 6.23 and 6.24 

H
ig

 =  Ho
ig

 + CP
ig

 dT           S
ig

 =  So
ig

 + CP
ig

 dT – R ln P/Po       ∫
T

T 0
∫
T

T 0

 Using the appropriate mean heat capacities for enthalpy and entropy, 
                                                H

ig
 =  Ho

ig
 + CP

ig
 (T-To) + HR                                      (6.52)    

S
ig

 =  So
ig

 + CP
ig

 lnT/To – R ln P/Po + SR                      (6.53) 



 
6.3 Residual Properties by Equations of State 
 

 Residual properties from the Virial equation of state 
 
A) Two terms Virial equation        Z-1 = BP / RT                              (3.38) 
      6.49 reduce to        

                  GR /RT = BP /RT                           (6.54) 
 
      And 6.44 becomes  

   HR /RT = P /R (B/T – dB/dT)            (6.55) 
      Substitute both equations into 6.47 
                                                   SR /R = -P /R dB/dT                          (6.56) 
     
  Good for low pressure up to 15 bar. 
 
 
 

                 B) Three terms Virial equation   Z = PV/RT = 1 + B/V +C/V2           (3.39)   
        

In terms of density   Z-1 = Bρ +Cρ2            
             

Then, 
                                      

GR /RT = 2Bρ + 3/2 Cρ2 - lnZ                                     (6.61) 
           
                                         HR /RT = T[(B/T – dB/dT) +(C/T – ½ dC/dT) ρ2]        (6.62) 
 
                                     SR /R = lnZ–T[(B/T+dB/dT) ρ+1/2 (C/T+dC/dT) ρ2]      (6.63) 
 
                      Useful for gases up to 50 bar. Solution required iteration procedure. 



 Residual properties by Cubic Equations of State 
 

Cubic Equation of State: 
P = (RT/V-b) – (α (T) / (V+εb)(V +σb))                                                       (3.42) 
 
Find the value of integrals and substitue in equations, 6046, 6.48 and 6.49 

 
                          (6.66b) GR/RT = Z-1 – ln (Z-β) - q I  
 
 
          (6.67) 
 
HR /RT = Z-1 + [dlnα(Tr)/ d lnTr -1] q I 

 
           (6.68)            

  
SR /R = ln (Z- β) + dlnα(Tr)/ d lnTr  q I

Where, 
1. β= Ω  Pr/Tr        (3.53)    
 
2. q = ψ α(T)/ Ω Tr              (3.54)    

           
3. For I: 

Case 1: ε ≠ σ         Ι = 1/σ−ε   ln(Ζ+σβ / Ζ+ε β )               (6.65b)   
Case 2: ε = σ      Ι = β/Ζ 

 
4. Derivative for RK   = - 0.5 

  Derivative for SRK = -C (Tr/α)0.5 
    Where C = 0.48 + 1.574ω – 0.176 ω 2 
             Derivative for PR    = -C (Tr/α)0.5 

             Where C = 0.37464 + 1.54226ω – 0.26992 ω 2 
 

5. Solve for Z first as in Ch.3. 
For vapor phase 
Z = 1 + β + q β (Z- β ) / (Z+ εβ)(Z +σβ)                             (3.52) 
 
For liquid phase 
Z = β + (Z+ εβ) (Z +σβ) (1+ β - Z/ qβ )                              (3.56) 
 
 Iteration procedures are needed (Ex. 3.8) 

 
 

Example 6.4 



 Generalized property Correlations for Gases (Sec. 6.7) 
 

1. Lee-Kessler Generalized Equation (high pressure above 15 bar) 
 
        

(6.85) HR/RTC = (HR)0 / RTC  + ω (HR) 1 / RTC 
  

                    (6.86)                         SR/R = (SR)0 / R  + ω (SR) 1 / R 
 
  

(HR)0 / RTC         Table E.5, E.7 
  
  (HR) 1 / RTC        Table E.6, E.8 
 

(SR)0 / R                  Table E.9, E.11 

 
(SR) 1 / R                       Table E.10, E.12 
 

 
2. Generalized second Virial coefficient correlation (low pressure up 

to 15 bar) 
 

   (6.87) HR/RTC = Pr [B0 - Tr dB0/dTr  + ω ( B1)  - Tr dB1/dTr)] 
 
 
 

                                    (6.88) SR/R = - Pr (dB0/dTr + ω dB1/dTr) 
 
Where, 

 
                                        (3.65)    B0 = 0.083 – 0.422/ Tr

1.6

      

                  

                                                            (3.66) B1 =  0.139 – 0.172/ Tr
4.2 

 
 
                                                                 

(6.89) dBo/dTr = 0.675/Tr
2.6

 
 

 
                                                                   

(6.90) dB1/dTr = 0.722/Tr
5.2

 
 
No iteration. 
 



 
6.4 Two-Phase System 
 

• In Fig. 3.1, Curves represent phase boundary for a pure substance. 
 

• A phase transition occurs when one of the curves is crossed. 
 

• When a phase transition occurs at a given constant T and P, the molar value or 
specific values change too. 

Vsat
liq

 ≠ Vsat
vap

 
 This is true for U, H, S, but not G. 
 

• For n moles or 1 mole at constant T and P, at the phase transition; 
 

dU = TdS – PdV            (U will change) 
 
dH = TdS + V dP          (H will change 6.8) 
 
dA = - P dV – S dT       (A will change 6.9) 
 
 dG = V dP – S dT          (dG = 0) 

 
If a differential amount of liquid is evaporate at constant T and Psat 

 
Gliq = Gvap 

 
• In general, for any two phases (α, β ) coexisting in equilibrium at constant T and 

Psat 
                                      Gα = Gβ                                     (6.69) 

 Then, along a two-phase boundary curve 
      dGα = dGβ       
 Substitute into the fundamental equation of dG for and   

Vα dP – Sα dT = Vβ dP – Sβ dT 
 Arranging,  
     dPsat/dT = Sβ- Sα / Vβ- Vα   = ΔSαβ/ΔVαβ 

 Integrate equation 6.8 for this change, yield the latent heat of phase transition 
                ΔHαβ = T ΔSαβ                                           (6.70) 
 Thus, ΔS αβ  = ΔHαβ/T   
 Substitute in the preceding equation, 
    dPsat/dT = ΔHαβ/T ΔVαβ                   (6.71) 
  Clpeyron equation. 
 For transition from liquid to vapor phase, 
                           dPsat/dT = ΔHLv/T ΔVLv                   (6.72) 
 
 Example 6.5. 



• Application of the clasius –clapeyron equation 
A plot of lnPsat vs. 1/T yields nearly a straight line 
 

lnPsat = A – B/T                                                             (6.75) 
Where A and B are constants for a given species. 
It is a rough application of PV relation. 
 

• Antoine equation is more accurate  
lnPsat = A – B/T + C                                                     (6.76) 

Where A, B and C are constants for a given species and given in the footnote. 
 

• Wagner equation more accurate over a wide range of temperatures. 
lnPr

sat = Aτ + Bτ1.5 + Cτ3 + Dτ6 / 1- τ                          (6.77) 
 Where  τ = 1-Tr 

 A, B, C and D are constants. 
 
Two Phase Liquid/Vapor systems 
 
                  nV = nL VL + nV VV 

Where n =  nL + nV 
Divide by n gives,         V = XL VL + XV VV 
Where XL and XV are the fraction of the total system that are liquid and vapor. 
 
Since,   XL + XV = 1 
   V = (1- XV) VL + XV VV 
Where, XV is called the quality. 
In general for other extensive properties (V, U, H, S, etc), 
                                     

          M = (1- XV) ML + XV MV                                             (6.82) 
 Other form, 

          M = ML + XV  ΔMLV                                                         (6.82b) 



 
6.5 Thermodynamic Diagrams 
 

• PT diagram (Fig. 3.1) 

 
Characteristics of PT diagram: 

a. Two-phase region is represented by a line. 
b. Triple point is represented by a point. 
c. Critical point is represented by a point. 

 
• PV diagram (Fig. 3.2) 

 
Characteristics of PT diagram: 

a. Two-phase region is represented by an area under the curve. 
b. Triple point is line. 
c. Critical point is line. 



• PH diagram (Fig. 6.2) 
 

 
 

Similar to PV diagram. 
 

• TS diagram (Fig. 6.3)    and HS diagram (Fig.6.4) (Mollier diagram)                              
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Similar to PV and PH diagrams. 



 
6.6 Tables of Thermodynamic Properties 
 

Steam tables (APP. F) both in SI units and English units. (P.688) 
 
SI units: 
F1 : Saturated liquid & vapor (T intervals). 
 
F2 : Superheated region for T ≥ Tsat of a given pressure. 
 
F3&F4: English units. 
 
Sub cooled liquid  Sat. → liquid &saturated vapor → Superheated vapor. 

 
 

Example 6.7 
 
 


