

PRACTICE IN SIMPLIFYING ALGEBRAIC EXPRESSIONS VERSION 1.0

*x***.**act: Practice in simplifying algebraic expressions

These materials were produced by the Wits Maths Connect Secondary (WMCS) project at the University of the Witwatersrand.

Visit us at www.witsmathsconnectsecondary.co.za

Team members: Craig Pournara (Project leader) Micky Lavery, Wanda Masondo, Vasantha Moodley, Yvonne Sanders and Fatou Sey, with thanks to Danell Herbst, Sheldon Naidoo and Shikha Takker

Version 1.0: Jan 2021

The work of the WMCS project is supported financially by the FirstRand Foundation, the Department of Science and Innovation and the National Research Foundation.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

The Creative Commons license means this booklet is freely available to anyone who wishes to use it. It may not be sold on (via a website or other channel) or used for profit-making of any kind. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-sa/4.0/</u>

About this booklet

The 31 worksheets in this booklet provide practice in simplifying algebraic expressions – a critical skill in introductory algebra at Grade 8 level. The worksheets also include answers for each question.

The pack is called \mathcal{X} . aCt for two reasons: algebra requires you to *act* and algebra requires you to be *exact*. To become good at algebra, you have to make sense of operating on letters, to show determination in getting used to new symbols, and to practise regularly. You also need to pay attention to the structure of algebraic expressions. In this pack we pay attention to all these issues.

We assume learners have been taught the content of introductory algebra so that they can use these worksheets to practise algebraic simplification. We provide a 7-page summary of the basics of simplifying algebraic expressions where we explain important concepts, terminology, notation and procedures with illustrative examples. We also include some discussion on what makes algebra confusing and what must be done to overcome these difficulties. We have written this summary in simple language for Grade 8 learners.

Our research in South African schools shows that learners have particular difficulty when algebraic expressions involve subtraction and negatives. They also struggle when expressions contain brackets. We developed the worksheets with these issues in mind. Some worksheets focus first on addition and positives before extending to negatives and subtraction. We also draw specific attention to the meaning of brackets in expressions. We encourage learners to look carefully at expressions before they rush to simplify them. This encourages them to pay attention to the structure of expressions – to notice what operations are being performed between terms, and to see the impact of minor variations between examples. Here is one such task:

In w	hich expressions:	5x(6+x)
a)	can you simplify terms <u>outside</u> the bracket before you deal with the bracket?	5 + x + (1 - x) 5 + x(1 - x)
b) c)	are the brackets unnecessary? are you required to apply the distributive law?	x - x(6 + x) x - x + (6 + x) 1 + 5 - 6(1 + x)

The worksheets are arranged in 4 sections as outlined below. Almost all worksheets were designed in pairs so that learners can work on 2 very similar worksheets, covering the same content and with very similar question types.

Section	#Wksts	Content
1	8	Distinguishing like and unlike terms, simplifying simple algebraic expressions, matching verbal and algebraic expressions, and using substitution to test whether expressions have been simplified correctly.
2	3	Evaluating simple algebraic expressions to emphasise that a letter can stand for a single number, and sometimes it can stand for many numbers.
3	10	Applying the distributive law, with particular attention to multiplying monomials by binomials.
4	10	Sets of mixed examples with several terms, different uses of brackets and more difficult examples that include the distributive law.

NOTES ON INTRODUCTORY ALGEBRA

In these notes we explain important concepts, terminology and notation in introductory algebra. We also provide examples to illustrate these. We have written these notes in simple language for Grade 8 learners. After the notes we discuss some instances where algebraic notation can be confusing.

1) Using variables in algebra

In algebra we use letters and numbers to represent quantities. We combine these with other symbols to represent the *relationships between* these quantities. For example, say we have 2 packets of sweets and we know that altogether there are 53 sweets.

If we say the number of sweets in the small packet is m and the number of sweets in the large packet is n, then the relationship can be expressed in algebra as m + n = 53. We say m + n is an *algebraic expression* and we say that m + n = 53 is an *algebraic equation*. We can also refer to m + n = 53 as an *algebraic statement*.

In primary school we use a place holder, \Box , or a "space", ___, to represent an unknown value, e.g. $\Box + 6 = 15$ and ______ - 5 = 2. In high school we use letters, e.g. x + 6 = 15 and a - 5 = 4. We can even have two letters in a statement, e.g. a - 5 = b.

Sometimes the letter has only *one* value that will make the statement true. In x + 6 = 15, the statement will only be true if x = 9. Sometimes the variable can have *more than one* value. In a - 5 = b, the value of a affects the value of b. So, once we know the value of a, we can work out a value of b. Here are some possible combinations of a and b: a = 12 and b = 7; a = 6 and b = 1; a = 5 and b = 0; a = 4 and b = -1; $a = 6\frac{1}{2}$ and $b = 1\frac{1}{2}$. As you can see, the b-values can be worked out using substitution, e.g. if a = 12 then b = 12 - 5 = 7. If we know the b-value, then we can calculate the a-value, e.g. if b = 3, then a = 8; if b = 7, then a = 12. In all these examples we have shown that letters stand for numbers.

In the example with the sweets we have the algebraic equation (or statement): m + n = 53. If there are 20 sweets in the small packet then there must be 33 sweets in the large packet. This means m = 20 and n = 33. If there are 15 sweets in the small packet, how many sweets will there be in the large packet: $m = _$ and $= _$? As you can imagine, m and n can have many different values but, in this case, they will always be whole numbers because we don't talk about a negative number of sweets or a fraction of a sweet.

2) Naming the components of an algebraic expression

Algebraic expressions are made up of *terms*. Each term contains letters or numbers or both. Terms are separated by the operations of addition or subtraction. Consider the algebraic expression 3p + 4k + 5. It consists of 3 terms which can be listed as 3p; 4k; 5.

The arrows indicate the separate terms.

- The letters are called *variables* because their values can change. In the example, variables are *p* and *k*. See colour coding in the diagram.
- Numbers that are multiplied by variables are called *coefficients*. In the example, the coefficient of p is 3 and the coefficient of k is 4. Mathematicians write the numbers before the letters, like 3p and 4k. It is not wrong to write p3 but the convention is to write the numbers first. If the coefficient of a variable is +1 or -1, we don't write the 1 (see example below).
- Numbers without a variable are called *constants* because their value does not change. In the example, the constant is 5.

Here is another example: -2x + y - 1This example has 3 terms: -2x; y and -1The variables are x and y The coefficient of x is -2, the coefficient of y is +1The constant is -1

Refer to No. 7a for more details on expressions that involve subtraction and have negative coefficients and constants.

3) Describing algebraic expressions in words

Algebraic expressions can be described in words. We will call these *verbal expressions*. For example, if we have the algebraic expression 3x + 5, we can create several verbal expressions that are slightly different. Here are four examples:

- The product of 3 and a number increased by 5
- The product of 3 and *x* increased by 5
- The product of 3 and *x*, add 5
- 3*x* add 5

We can also start with the verbal expression and then create the algebraic expression. For example, "the sum of 7 and a number, then multiplied by 2" can be written algebraically as $(7 + n) \times 2$. Usually we will write it as 2(7 + n) or 2(n + 7). We know that addition is commutative, that is n + 7 is the same as 7 + n so they are written interchangeably.

Algebraic expression	Examples of verbal expressions	
3p + 4k + 5	• The product of 3 and <i>p</i> , add to the product of 4 and <i>k</i> , then add 5	
3p + 4k + 3	• Three <i>p</i> add four <i>k</i> add 5	
2m (1 (2))	• The product of 3 and <i>p</i> , subtract 6 add negative 2	
3p - 6 + (-2)	• 3p subtract 6 add negative 2	
$x^2 - x + 2$	A number squared subtract that number, then add 2	
x - x + 2	A number squared subtract itself and add 2	

Here are 3 more examples of algebraic and their equivalent verbal expressions:

4) The language of operations and signs

In the worksheets we make a clear distinction between operations and signs. We do not use the words *plus* and *minus* because they don't tell us whether we are referring to a sign or an operation. Pay attention to this in the following examples:

For operations, we say:	add and subtract	5 + 8 10 - 4	5 add 8 10 subtract 4
For signs, we say:	<i>positive</i> and <i>negative</i>	-4 - 3 -4 - (+3) 4 - (-3) 4 + (-3)	negative 4 subtract 3 negative 4 subtract positive 3 4 subtract negative 3 4 add negative 3

Sometimes we talk about the *plus symbol* (+) and the *minus symbol* (-). When we do this, we are referring only to the symbol. We are not referring to its meaning as a sign or an operation. For example, in 4 + (-3) the plus symbol (+) tells us to add and the minus symbol (-) tells us that 3 is negative. Refer to No. 7a for more details on expressions that involve subtraction and negatives.

5) Like and unlike terms

In algebra there are two interesting words: *like* and *unlike*. Both words are familiar on social media but they have different meanings in maths to their use on social media!! In maths we use them when we refer to terms. We speak of *like terms* and *unlike terms*.

Like terms have the same (i.e. like) variables with the same (i.e. like) exponents for the variables. Unlike terms have different variables or different exponents even if they have the same variables.

Like terms	Notes	Unlike terms	Notes
k + 3k	Same variable k, same exponent 1	3 + 3k	Term with variable and term with constant
5a - 7a	Same variable <i>a</i> , same exponent 1	5a - 7b	Two different variables
3x + 7x	Same variable x , same exponent 1	$3x + 7x^2$	Same variable but different exponents
$x^2 - 2x^2$	Same variable x, same exponent 2	$k^{3} - x^{3}$	Same exponents but different variables
5ab + 2ba	Same variables and exponents – it	7k - 7x	Two different variables (does not matter that
	does not matter that the order of the		coefficients are the same)
	variables is different because	5ab + 2b + 7a	3 terms don't have same combination of variables
	multiplication is commutative		

6) Operating on like and unlike terms

a) Adding and subtracting terms

We can add and subtract like terms. We cannot add and subtract unlike terms. We speak of *collecting like terms* which means we add or subtract the like terms to get a simpler answer.

Expressions can be simplified by adding or	Expressions cannot be simplified by adding or	Expressions can be partly simplified
subtracting because they contain like terms	subtracting because there are no like terms	because they have some like terms
2a + 3a = 5a	2a + 3b	2a + b + 7b = 2a + 8b
2a + a = 3a	2a-2b	2a + 2b - 2a + 3b = 5b
5k - 3k = 2k	2a - 2	2a-2-a=a-2
p + p = 2p	a + 4	a + 4 + a - 3 = 2a + 1
2p - p = p	$3a^2 - 3a - 3$	$3a^2 - a^2 - 3 = 2a^2 - 3$
$4a^2 + 6a^2 = 10a^2$	5a - 2ab	$ab + ba + a^2b = 2ab + a^2b$
m - 5m = -4m		

- b) Multiplying terms
 - We can multiply like and unlike terms
 - When we multiply letters, we use the addition law of exponents:
 - When we multiply powers with the same base, then we add the exponents
 - Here are some examples:

$5p \times 4 = 20p$	$5p^3 \times 4p = 20p^{3+1} = 20p^4$
$5p \times (-4) = -20p$	$5a \times 4b = 20ab$
$p \times p = p^{1+1} = p^2$	$5a \times 4ab = 20a^2b$

- c) Dividing terms
 - We can divide like and unlike terms
 - When we divide terms with variables, we use the subtraction law of exponents: When we divide powers with the same base, then we subtract the exponents
 - Here are some examples (assume the denominators are not zero):

$$\frac{12p}{4} = 3p \qquad \qquad \frac{12p^3}{3p} = 4p^{3-1} = 4p^2$$
$$\frac{12p^2}{-4} = -3p^2 \qquad \qquad \frac{6ab}{2b} = 3a$$

d) Distributive law

We apply the distributive law when we multiply a monomial by an expression containing two or more unlike terms. A monomial consists of one term, e.g. 7a; $2a^2$; 6ab; 12. In Grades 8 and 9 you will often encounter binomials (e.g. x + 3 and 2m - 5) and trinomials (e.g. 2a + 3b - 4c).

We need to use brackets to show that the monomial is multiplied by all terms in the binomial or trinomial. For example, 2(x + 3) means the 2 must be multiplied by each term in the bracket. However, the example could also be written as: (x - 3)2. In both cases the 2 is multiplied by the binomial. We illustrate the distributive law with three examples.

Example 1	Example 2	Example 3
2(x+3)	(2m-5)4m	-3(2a+3b-4c)
= 2(x) + 2(3)	= 4m(2m) + 4m(-5) or $4m(2m) - 4m(5)$	= (-3)(2a) + (-3)(3b) + (-3)(-4c)
= 2x + 6	$= 8m^2 - 20m$	or $(-3)(2a) + (-3)(3b) - (-3)(4c)$
		= -6a - 9b + 12c

e) Working with brackets

Brackets can have several different uses in algebra. For example:

- i. We use brackets when we substitute numbers into expressions
- ii. We use brackets to separate signs and operations
- iii. We can use brackets instead of the multiplication sign (×) as we did with the distributive law
- iv. We use brackets to group terms
- v. Sometimes we need to use brackets to make our meaning clear

Brackets for substitution	Brackets to separate signs and operations	Brackets to show multiplication
Calculate the value of	4 subtract positive 3: $4 - (+3)$	2(5) is the same as 2×5 which is the same as
i) $a-b$	4 subtract negative 3: $4 - (-3)$	5 + 5.
ii) $2a + b$		In the same way:
if $a = 3$ and $b = 4$.	4x subtract positive 3: $4x - (+3)$	$2(3x + y)$ is the same as $2 \times (3x + y)$ which
	4x subtract negative $3x$: $4x - (-3x)$	is the same as $(3x + y) + (3x + y)$
i) $a-b$		
= (3) - (4) = -1		Using the distributive law:
		2(3x + y)
ii) $2a + b$		= 2(3x) + 2(y)
= 2(3) + (4)		= 6x + 2y
= 6 + 4 = 10		

Brackets to group terms	Using brackets to make the meaning clear
Compare the following examples:	When we write -3^2 does it mean $(-1) \times 3 \times 3$ or $(-3) \times (-3)$?
1) $7-5+1=3$	Based on mathematical conventions, we take -3^2 to mean $(-1) \times 3 \times 3 = -9$
2) $(7-5)+1=2+1=3$ 3) $7-(5+1)=7-6=1$	If we want to represent "negative 3 squared", we must use brackets: $(-3)^2 = 9$
	A similar problem arises with the distributive law:
In example 2, the brackets do not affect the answer. However, in example 3 the grouping	These two expressions are the same $2(x + 5)$ and $(x + 5)^2$ because multiplication is commutative.
with brackets means that 5 and 1 are added first and then their sum is subtracted from 7.	In both expressions, the 2 must be multiplied by both terms in the bracket.
	BUT if we have negatives, then we need to be careful:
We can also use brackets to emphasise the	Say we have the expressions: $-2(x + 5)$ and $(x + 5) - 2$
structure of an expression: 1) $(a+b) + (a+b)$	These two expressions are different.
a+b+a+b	-2(x+5) means that both terms in the bracket are multiplied by -2
	BUT $(x + 5) - 2$ does not represent multiplication. It represents: "x add 5
The brackets make it easy to see that we are adding the same binomial, i.e. $a + b$	subtract 2" and $x + 5 - 2 = x + 3$
	When we put the -2 on the right of the bracket, the meaning of the minus
	symbol changes from "negative" to "subtract".
	If we want to multiply, then we must put the -2 in brackets: $(x + 5)(-2)$
	= -2x - 10

7) What makes algebraic notation and terminology confusing?

Here we discuss four cases that illustrate ways in which algebraic notation and terminology can be confusing.

a) Sometimes a symbol represents a sign, sometimes it represents an operation

We have already noted that the minus symbol can represent a sign or an operation. Here we focus on the possible confusions with sign and operation in algebraic notation.

Consider the expression: 4 - 3x

We say "4 subtract 3x". This sounds as if the minus symbol does not belong to 3x. We say the expression has two terms that are separated by the operation of subtraction. This also suggests that the minus symbol does not belong to the 3x. But then we say the terms are 4 and -3x (four and negative three x) which means the minus symbol *is* connected to the 3x. We also say "the coefficient of x is negative 3". Once again, this indicates that the minus symbol belongs to the 3.

This is confusing because sometimes we are separating the minus symbol from the 3 and sometimes we are attaching it to the 3. Part of learning algebra involves learning when to combine the minus (or plus) symbol with the letter or number and when to separate it from the letter or number.

Note that if the expression were 4 - x, everything we have said above would still apply. The coefficient of x is -1, and the terms are 4 and -x.

b) Different meanings and uses for the word "term"

The way we use the word *term* can be confusing. We discuss two different situations below.

i) Counting the number of terms in an expression

Consider the terms 3x and 5y. We can represent their sum as 3x + 5y which is an expression with two terms. The same applies for subtraction: the expression 3x - 5y has two terms. In both cases the terms are separated by addition or subtraction. However, if we multiply the terms, we write (3x)(5y). Then this is only <u>one</u> term because the 3x and 5y are not separated by addition or subtraction. The same applies for division: $\frac{3x}{5y}$ is treated as one term.

Now take 3x + 5y and multiply the expression by 4. We write this as 4(3x + 5y). This new expression consists of only <u>one</u> term. Why does this happen? Firstly, (3x + 5y) is considered as one term when 3x and 5y are put in brackets, and 4 is a single term. So then we have two single terms that are multiplied. This is treated as one term because there is no addition or subtraction separating 4 and (3x + 5y).

But, when we apply the distributive law, we get 4(3x + 5y) = 12x + 20yNow we have two terms again because 12x and 20y are separated by the operation of addition.

ii) Referring to terms in brackets

We have just noted that 4(3x + 5y) is one term.

When we look inside the bracket, we refer to 3x as the *first term in the bracket* and 5y as the *second term in the bracket*. But, if you are asked how many terms in 4(3x + 5y), the correct answer is **one**!!! This may seem weird but it's how we talk about terms in algebra.

c) Seeing the equal sign in two different ways

When you first learned about the equal sign, you treated it as "gives me", e.g. $4 + 5 = \Box$. Here we say "4 add 5 *gives me* 9". But when you have a statement like: $4 + 5 = 3 + \Box$, you need to reason as follows: "4 add 5 *is the same as* 3 add something". The left side adds to 9 so the right side must also add to 9. This means the place holder must have a value of 6. So we have 4 + 5 = 3 + 6 and we say "4 add 5 is the same as 3 add 6".

Here is another example: $4 + 5 = \Box - 2$.

Once again, we have to see the equal sign as "is the same as". So we need to say "4 add 5 is the same as something subtract 2". If the left side adds to 9, then the right side must also add to 9. This means the place holder must have a value of 11. We can also write this as an equation in x: 4 + 5 = x - 2

d) Thinking that an answer must consist of one term only

When we operate on numbers, we always expect to get one number as the answer. For example: 15 - 2(1 + 3) = 15 - 2(4) = 15 - 8 = 7. Although we may show several steps, the final answer is 7. We know we are finished because there are no more operations to perform.

Algebra can be confusing because we seldom get a single term for an answer. For example, if we simplify the expression 5 + 3x + 2 - x, we get 3x - x + 5 + 2 = 2x + 7.

The answer 2x + 7 may seem unfinished because there is an addition operation in the answer. It is tempting to write 2x + 7 = 9x but **this is not correct because we cannot add unlike terms**. So the final answer remains as 2x + 7.

When we simplify *numeric* expressions, we are finished a calculation when we have performed all the operations. When we simplify *algebraic* expressions, we are finished when we have performed the operations *on the like terms*.

In this worksheet you will focus on: the difference between like and unlike terms, adding and subtracting 2 like terms, and using substitution to check answers.

Qu	estions	
1)	Write in simplest form: (e.g. $3 \times a = a + a + a =$	$a^2 = 3a$ and $a \times a = a^2$)
	a) $2 \times x =$ b) $x \times x =$	c) $2 \times x \times x =$
2)	Look at each pair of terms. Say whether they are I answer.	ike terms or unlike terms. Give reasons for each
	a) $2x \text{ and } x^2$ b) $2x^2 \text{ and } 3x^2$	c) $2 \text{ and } 2x$ d) $2x^2 \text{ and } 2y^2$
3)	Write down the <i>unlike</i> term in each list of terms.	
	a) 7xr; 7x; 7rx b) 6y; 10; 1	10y c) $3x; 2x^3; -3x$
4)	Identify the like terms in each list. Then add the lil	ke terms in each list.
	a) $4x^2$; 3; $3x^2$ b) $7xr$; $7x$;	8 <i>xr</i> c) 6; 6 <i>y</i> ; 10
5)	Say whether each statement is TRUE or FALSE. If f equal sign to make it true.	
	a) $6a + 2a = 8a$ b) $5k^2 + 2k^2 = 7$	d) $6a - 2 = 4a$ e) $5ab + 6a = 11aba$
	c) $6pr - pr = 5pr$	f) $7ab + 2ba = 8a3b$
		1, 140 1 204 0400
6)	We are going to use substitution to check 2 stater	nents in Q5:
	a) Focus on Q5a: $6a + 2a = 8a$	b) Focus on Q5d: $6a - 2 = 4a$
	i) What is the value of $6a + 2a$ if $a = 3$?	i) What is the value of $6a - 2$ if $a = 1$?
	ii) What is the value of $8a$ if $a = 3$?	ii) What is the value of $4a$ if $a = 1$?
	iii) What is the value of $6a + 2a$ if $a = 5$?	iii) What is the value of $6a - 2$ if $a = 5$?
	iv) What is the value of $8a$ if $a = 5$?	iv) What is the value of $4a$ if $a = 5$?
	v) Repeat the checks for the following	v) Repeat the checks if $a = 3, a = -1$ and
	values of a : $a = 1$, $a = -2$ and $a = 0$.	a = 0.
	vi) Can you think of any value of a where	vi) You should have found one value for a
	6a + 2a will NOT be equal to $8a$?	where $6a - 2$ is equal to $4a$. Can you find
	Explain.	any other values that will make $6a - 2$
		equal to $4a$? Explain your answer using the
		ideas of like and unlike terms.

Worksheet 1.1	
Answors	

An	swers					
Qu	estions	Answers				
1)	Write in simplest form: (e.g. $3 \times a = a + a + a = 3a$ and $a \times a = a^2$)	1)				
	a) $2 \times x =$ b) $x \times x =$ c) $2 \times x$ x =	× a) $2x$ b) x^2 c) $2x^2$				
2)	Look at each pair of terms. Say whether they are like terms or unlike terms. Give reasons for each answer. a) $2x$ and x^2 b) $2x^2$ and $3x^2$ c) 2 and $2x$ d) $2x^2$ and $2y^2$	 a) 2x and x² are unlike terms. The variable of the 1st term is of degree one. The variable of the 2nd term is of degree two. b) 2x² and 3x² are like terms. The variables of both terms are of degree two. c) 2 and 2x are unlike terms. The 1st term is a constant. The 2nd term has a variable of degree one. d) 2x² and 2y² are unlike terms. The 1st term has the variable x and the 2nd term has the variable y. 				
3)	Write down the unlike term in each list of terms.a) $7xr; 7x; 7rx$ b) $6y; 10; 10y$ c) $3x;$	2 x^3 ; $-3x$ a) $7x$ b) 10 c) $2x^3$				
4)	Identify the <i>like</i> terms in each list. Then add the like terms list. a) $4x^2$; 3; $3x^2$ b) $7xr$; $7x$; $8xr$ c) 6; 6					
5)	Say whether each statement is TRUE or FALSE. 5) If the statement is false, change the <i>right</i> side of the equal sign to make it true. a) $6a + 2a = 8a$ d) $6a - 2 = 4a$ b) $5k^2 + 2k^2 = 7$ e) $5ab + 6a = 11aba$ c) $6pr - pr = 5pr$ f) $7ab + 2ba = 8a3b$	a) $6a + 2a = 8a$ TRUE b) $5k^2 + 2k^2 = 7$ FALSE $5k^2 + 2k^2 = 7k^2$ c) $6pr - pr = 5pr$ TRUE d) $6a - 2 = 4a$ FALSE 6a - 2 = 6a - 2 e) $5ab + 6a = 11aba$ FALSE 5ab + 6a = 5ab + 6a 7ab + 2ba = 8a3b FALSE 7ab + 2ba = 9ab				
6)	Answer to a) a) Focus on Q5a: $6a + 2a = 8a$ i) $6(3) + 2(3) = 24$ ii) $8(3) = 24 \therefore$ Equal for $a = 3$ since expressions in Q6a(i) and Q6a(ii) both equal 24. iii) $6(5) + 2(5) = 40$ iv) $8(5) = 40 \therefore$ Equal for $a = 3$ v) (1) For $a = 1$, $6a + 2a = 8$ and $8a = 8$ (2) For $a = -2$, $6a + 2a = -16$ and $8a = -1$ (3) For $a = 0$, $6a + 2a = 0$ and $8a = 0$ vi) No. The statement is always true, no matter what value of a you choose. $6a$ and $2a$ are like terms, their sum is $8a$	iii) $6(5) - 2 = 28$ iv) $4(5) = 20$ \therefore Not equal for $a = 5$ since Q6b(iii) and Q6b(iv) have different answers v) (1) For $a = 3$, $6a - 2 = 16$ and $4a = 12$ (2) For $a = -1$, $6a - 2 = -8$ and $4a = -4$ (3) For $a = 0$, $6a - 2 = -2$ and $4a = 0$ vi) No. The only value that gives the same				

In this worksheet you will focus on: the difference between like and unlike terms, adding and subtracting 2 like terms, and using substitution to check answers.

Qu	estio	ns							
1)	Writ	te in simplest form	n:						
	a)	$2 \times y =$		b)	$y \times y =$			c)	$4 \times y \times y =$
2)	Lool	k at each pair of te	erms. Say	whether	they are lik	e te	rms or unlike t	erms. (Give reasons for each
	ansv	wer.							
	a)	$2y$ and y^2	b)	$3x^2$ and x	ζ ²	c)	3 and 3 <i>x</i>		d) $2m^2$ and $2n^2$
3)	Writ	te down the <i>unlike</i>	term in	each list.					
	a)	5x; 5xy; 7yx		b)	6y; 6; 10	у		c)	$3y; 2y^3; -3y$
4)	Ider	ntify the <i>like</i> terms	in each	list. Then a	add the like	ter	ms in each list.		
	a)	$4y^2$; 3; $3y^2$		b)	7mn; 7m;	8 <i>m</i>	n	c)	5; 5 <i>y</i> ; 10 <i>y</i>
5)	Say	whether each stat	ement i	s TRUE or F	ALSE.				
	If th	ne statement is fal	se, chan	ge the <i>righ</i>	t side of th	e eq	ual sign to ma	ke the	statement true.
	a)	8a + 2a = 10a		c)	6pr – 2pr	· = ·	4pr	e)	7ab + 6a = 13aba
	b)	$5k^2 + 5k^2 = 10$		d)	9a - 2 =	7a	L .	f)	11ab + 2ba = 11a2b
6)	We	are going to use s	ubstituti	on to chec	k 2 stateme	ents	in Q6:		
	a)	Focus on Q6a: 80	a + 2a =	= 10a		b)	Focus on Q60	d: 9a —	2 = 7a
	•	i) What is the v	alue of	8a + 2a if	a = 1?		i) What is t	he valu	le of $9a - 2$ if $a = 1$?
		ii) What is the v	alue of	10a if a =	1?		ii) What is t	he valu	ue of $7a$ if $a = 1$?
		iii) What is the v	alue of	8a + 2a if	a = 3?		iii) What is t	he valu	le of $9a - 2$ if $a = 3$?
		iv) What is the v	alue of	10a if $a =$	3?		iv) What is t	he valu	ue of $7a$ if $a = 3$?
		v) Repeat the c	hecks if				v) Repeat th	ne cheo	cks if $a = -3$, $a = -1$ ar
		<i>a</i> = −3, <i>a</i> =	-1 and	a = 0.			a = 0.		
		vi) Can you thin	•				-		e found only one value f
		8a + 2a will		•					2 is equal to 7 <i>a</i> . Can you
		Explain your			deas of				values that will make
		like and unlil	ke terms					•	57a? Explain your answer of like and unlike terms.

pers () $2y$ b) y^2 c) $4y^2$ () $2y$ b) y^2 c) $4y^2$ () $4y^2$ are unlike terms. The variable of the 1 st term is of the variable of the 2 nd term is of degree two. () and x^2 are like terms. The variables of both terms are of the terms. The 1 st term is a constant. The 2 nd () has a variable of degree one. () and $2n^2$ are unlike terms. The variables of the terms are () and $2n^2$ are unlike terms. The variables of the terms are () and $2n^2$ are unlike terms. The variables of the terms are () and $2n^2$ are unlike terms. The variables of the terms are () and $2n^2$ are unlike terms. The variables of the terms are () and $2n^2$ are unlike terms. The variables of the terms are () and $2n^2$ are unlike terms. The variables of the terms are () and $2n^2$ are unlike terms. The variables of the terms are () and $2n^2$ are unlike terms. The variables of the terms are () and $2n^2$ are unlike terms. The variables of the terms are () and $2n^2$ are $2n^2$ are $2n^3$ () and $5x$ b) 6 c. $2y^3$ () $4y^2 + 3y^2$ b) $7mn + 8mn$ c) $5 + 10$ () $= 7y^2$ () $= 15mn$ () $= 15$
and y^2 are unlike terms. The variable of the 1 st term is of ree one. The variable of the 2 nd term is of degree two. and x^2 are like terms. The variables of both terms are of ree two. d 3x are unlike terms. The 1 st term is a constant. The 2 nd of has a variable of degree one. and $2n^2$ are unlike terms. The variables of the terms are errent.
The variable of the 2 nd term is of degree two. and x^2 are like terms. The variables of both terms are of the terms. The 1 st term is a constant. The 2 nd that a variable of degree one. and $2n^2$ are unlike terms. The variables of the terms are terms. 3) a) $5x$ b) 6 c) $2y^3$ a) $4y^2 + 3y^2$ b) $7mn + 8mn$ c) $5 + 10$ $= 7y^2$ $= 15mn$ $= 15$
a) $5x$ b) 6 c) $2y^3$ a) $4y^2 + 3y^2$ b) $7mn + 8mn$ c) $5 + 10$ $= 7y^2$ $= 15mn$ $= 15$
a) $4y^2 + 3y^2$ b) $7mn + 8mn$ c) $5 + 10$ = $7y^2$ = $15mn$ = 15
a) $8a + 2a = 10a$ TRUE b) $5k^2 + 5k^2 = 10$ FALSE $5k^2 + 5k^2 = 10k^2$ c) $6pr - 2pr = 4pr$ TRUE d) $9a - 2 = 7a$ FALSE 9a - 2 = 9a - 2 e) $7ab + 6a = 13aba$ FALSE 7ab + 6a = 7ab + 6a FALSE 7ab + 6a = 7ab + 6a FALSE 7ab + 6a = 13aba FALSE 7ab + 6a = 13aba FALSE 7ab + 6a = 13aba FALSE 7ab + 6a = 7ab + 6a 11ab + 2ba = 11a2b FALSE 11ab + 2ba = 11ab
Answer to b) b) Focus on Q6d: $9a - 2 = 7a$ i) $9(1) - 2 = 7$ ii) $7(1) = 7 \therefore$ Equal for $a = 1$ iii) $9(3) - 2 = 25$
iv) $7(3) = 21 \therefore$ Not equal for $a = 3$ v) (1) For $a = -3$, $9a - 2 = -29$ and 7a = -21 (2) For $a = -1$, $9a - 2 = -11$ and 7a = -7 (3) For $a = 0$, $9a - 2 = -2$ and $7a = 0$

In this worksheet you will focus on: working with verbal and algebraic expressions, the difference between like and unlike terms, adding and subtracting 2 like terms, and using substitution to check answers.

Questions

- 1) In the table below the letter *g* represents any number.
 - e.g. The verbal expression "a *number increased by 2*" is written as g + 2 but it could also be written as 2 + g. Match the columns. There may be more than one correct answer for some options!

	Verbal expression
1.	8 add a number
2.	A number multiplied by 8
3.	8 subtract a number
4.	A number divided by 8
5.	A number decreased by 8

Alg	Algebraic expression					
А	8+g					
В	8 <i>g</i>					
С	<i>g</i> + 8					
D	g-8					
Е	g(8)					
F	$8 \div g$					
G	8-g					
Η	$g \div 8$					

A verbal expression is written in words. e.g. Add 3 to a number. An algebraic expression uses symbols for operations $(+; -; x; \div)$ and variables to replace "a number". e.g. x + 3So here we have replaced the words "a number" with x and we have used the symbol + in place of "add".

2)

a) For each row, shade the like terms in the same colour.

Α.	3 <i>x</i>	$4x^{2}$	3	$3x^2$	
В.	7q ²	$7q^2r$	8qr	8	-8rq
C.	2(3 <i>b</i>)	$3b^2$	9b		
D.	5a ²	5a	2a ³	3a ²	9a

b) Add the like terms you shaded in Q2a for A, B and C. Solve for each row separately.

3) Say whether each statement is TRUE or FALSE. If the statement is false, change the part on the *right* of the equal sign to make the statement true.

a) $5a + 7a = 12a^2$

b) 2m - m = 2m

- c) 7 3b = 4b
- d) 5a + 6b = 11ab

Worksheet 1.3 continued

Que	esti	ons	
4)	In t	his question we substitute values to check if expressions are equal.	
	a)	We will focus on the expressions from Q3c: $7 - 3b$ and $4b$	
		i) What is the value of $7 - 3b$ if $b = 2$?	
		ii) What is the value of $4b$ if $b = 2$?	
		iii) What is the value of $7 - 3b$ if $b = -2$?	
		iv) What is the value of $4b$ if $b = -2$?	
		v) Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.	
		vi) Can we say that $7 - 3b = 4b$? Justify your answer.	
	b)	In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to se	e if they are always equal.
		i) Show that they are not equal if $a = 3$ and $b = -2$.	
		ii) Show that they are not equal if $a = 10$ and $b = 10$.	
		iii) Are the expressions equal if $a = 1$ and $b = 1$?	
		iv) Choose another set of your own values for a and b and check is	if the expressions are equal.
		v) Can we conclude that the statement $5a + 6b = 11ab$ is true?	Why/why not?
5)	Fill	in the missing spaces to make the algebraic statements true:	
	a)	2x + 4x =	
	b)	2x - 4x =	
	c)	$2 + 3x + 4 = \+ 6$	
	d)	$2 + 3x - 4x = -x + _$	
	e)	$-3x + 4 + __= 2x + __$	
	f)	+ - 4 = 5x - 4	
6)	Co	lect like terms and simplify:	[]
		e.g. $2p + 4 - p$	For the answer:
		= 2p - p + 4	Write the variable term first, then write the constant term.
		= p + 4	
	a)	2 + 3x + 4x + 5	
	b)	2 + 3x - 4x + 5	
	c)	2-3x+4-5x	
	d)	2-3x-4+5x	

AD	swers													
Que	Questions								Answers					
1)	 In the table below the letter g represents any number. e.g. The verbal expression "a number increased by 2" is written as g 2 but it could also be written as 2 + g. Match the columns. There n be more than one correct answer for some options! 						-			A; C 3; E				
	Verbal expression Algebraic expression								3					
	1. 8 a	dd a numb	er		A	8 + <i>g</i>				4. H	1			
	2. A n	umber mu	ltiplied by	8	В	8 <i>g</i>				5. [)			
	3.8 subtract a numberC $g + 8$													
	4. A n	umber div	ided by 8		D	<i>g</i> – 8								
	5. A n	umber dec	reased by	8	E	g(8)								
					F	$8 \div g$								
					G	8-g								
					Н	<i>g</i> ÷ 8								
2)	2)						2)							
	a) For	each row,	shade the	like terms	in the sa	me colour.			a)					
	Α.	3 <i>x</i>	$4x^{2}$	3	$3x^2$				A.	3 <i>x</i>	$4x^{2}$	3	$3x^2$	
	В.	7q ²	$7q^2r$	8qr	8	-8rq			В.	7q ²	7q²r	8qr	8	-8rq
	C.	2(3b)	$3b^{2}$	9 <i>b</i>				_	C.	2(3 <i>b</i>)	3b ²	9b		Ĺ
	D.	5a ²	5 <i>a</i>	2 <i>a</i> ³	3a ²	9a			D.	$5a^2$	50 5a	2a ³	3a ²	9a
						•	-				54		04	
		l the like te each row s	•		22a for A,	B and C. S	olve		b)	A. 4x ² -	$+3x^2 = 7$	<i>x</i> ²		
										-	(-8rq) =			
										C. 2(3b)	+9b = 1	.5 <i>b</i>		
3)	•	ther each s						3)	- 1	Folder	Fa 7-	- 12~		
	stateme	ange the pa at true	art on the	right of th	e equai si	ign to mak	e the		a) h)	False: False:	5a + 7a 2m — m			
		+7a = 12	a^2						c)	False:		= 7 - 3b		
	-	-m = 2m							d)	False:	5a + 6b	= 5a + 6	b	
		3b = 4b	_											
	d) 5 <i>a</i>	+ 6b = 11	ab											

Answers continued

ii) What is the value of 4b if $b = 2$?iii) $7 - 3(-2) = 4$ iii) What is the value of $7 - 3b$ if $b = -2$?iv) $4(-2) = -8$ iv) What is the value of 4b if $b = -2$?v)v) Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.v)v) Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.v)vi) Can we say that $7 - 3b = 4b$? Justify your answer.vi)b) In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to see if they are always equal.vi) It is true for b values of b .ii) Show that they are not equal if $a = 3$ and $b = -2$.b)iii) Are the expressions equal if $a = 10$ and $b = 10$.ii) $5(3) + 6(-2)$ $11(3)(-2) =$ iv) Choose another set of your own values for a and b andii) $5(10) + 6(10)$	of equal for $b = 2$ 13 • Not equal for $b = -2$, $7 - 3(1) = 4$ and • True for $b = 1$ b, $7 - 3(0) = 7$ and • Not true for $b = 0$ = 1. But it is not true for all
equal.a)We will focus on the expressions from Q3c: $7 - 3b$ and $4b$ i)a)a)i)What is the value of $7 - 3b$ if $b = 2$?ii) $7 - 3(2) = 1$ ii)iii) $4(2) = 8 \therefore Nc$ ii)What is the value of $4b$ if $b = 2$?iii) $4(2) = 8 \therefore Nc$ iii)What is the value of $7 - 3b$ if $b = -2$?iv) $4(-2) = -8 \therefore$ iv)What is the value of $4b$ if $b = -2$?iv) $4(-2) = -8 \therefore$ v)Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.v)(1)v)Check if $7 - 3b = 4b$? Justify your answer.v)v)Check if $7 - 3b = 4b$? Justify your answer.vi)b)In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to see if they are always equal.vi)i)Show that they are not equal if $a = 3$ and $b = -2$.vi)ii)Are the expressions equal if $a = 1$ and $b = 1$?vi)iv)Choose another set of your own values for a and b and check if the expressions are equal.ii)	13 • Not equal for $b = -2$, 7 - 3(1) = 4 and True for $b = 1$, 7 - 3(0) = 7 and Not true for $b = 0$
a) We will focus on the expressions from Q3c: $7 - 3b$ and $4b$ i) $7 - 3(2) = 1$ ii) What is the value of $7 - 3b$ if $b = 2$? iii) What is the value of $4b$ if $b = 2$? iv) What is the value of $7 - 3b$ if $b = -2$? iv) What is the value of $4b$ if $b = -2$? iv) What is the value of $4b$ if $b = -2$? iv) Check if $7 - 3b = 4b$ is true when $b = 1$ and then if b = 0. v) Check if $7 - 3b = 4b$? Justify your answer. i) Show that they are not equal if $a = 3$ and $b = -2$. ii) Show that they are not equal if $a = 1$ and $b = 10$. ii) Show that they are not equal if $a = 1$ and $b = 1$? iv) Choose another set of your own values for a and b and check if the expressions are equal. ii) $5(10) + 6(10)$ 11(10)(10)	13 Not equal for $b = -2$, 7 - 3(1) = 4 and ∴ True for $b = 1$, 7 - 3(0) = 7 and ∴ Not true for $b = 0$
i) What is the value of $7 - 3b$ if $b = 2$?ii) $4(2) = 8 \therefore Nd$ ii) What is the value of $4b$ if $b = 2$?iii) $7 - 3(-2) = 3$ iii) What is the value of $7 - 3b$ if $b = -2$?iv) $4(-2) = -8 \therefore$ iv) What is the value of $4b$ if $b = -2$?v)v) Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.v)v) Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.v)vi) Can we say that $7 - 3b = 4b$? Justify your answer.v)b) In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to see if they are always equal.vi) It is true for b values of b .i) Show that they are not equal if $a = 3$ and $b = -2$.ii) $5(3) + 6(-2)$ $11(3)(-2) =$ iii) Are the expressions equal if $a = 1$ and $b = 1$?ii) $5(10) + 6(10)$ $11(10)(10)$	13 Not equal for $b = -2$, 7 - 3(1) = 4 and ∴ True for $b = 1$, 7 - 3(0) = 7 and ∴ Not true for $b = 0$
ii) What is the value of 4b if $b = 2$? iii) What is the value of 7 - 3b if $b = -2$? iv) What is the value of 4b if $b = -2$? iv) What is the value of 4b if $b = -2$? iv) What is the value of 4b if $b = -2$? iv) Check if 7 - 3b = 4b is true when $b = 1$ and then if b = 0. v) v) Check if 7 - 3b = 4b is true when $b = 1$ and then if b = 0. vi) Can we say that 7 - 3b = 4b? Justify your answer. (2) For $b = 0$. 4(1) = 4 (2) For $b = 0$. 4(0) = 0 vi) It is true for b . values of b . i) Show that they are not equal if $a = 3$ and $b = -2$. ii) Show that they are not equal if $a = 1$ and $b = 1$? iv) Choose another set of your own values for a and b and check if the expressions are equal. ii) State the expressions are equal. iii) State the expressions are equal.	13 Not equal for $b = -2$, 7 - 3(1) = 4 and ∴ True for $b = 1$, 7 - 3(0) = 7 and ∴ Not true for $b = 0$
iii)What is the value of $7 - 3b$ if $b = -2$?iii) $7 - 3(-2) = 1$ iv)What is the value of $4b$ if $b = -2$?iv) $4(-2) = -8$ iv)What is the value of $4b$ if $b = -2$?v)v)Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.(1)For $b = 1$ $4(1) = 4$ vi)Can we say that $7 - 3b = 4b$? Justify your answer.(2)For $b = 0$ $4(0) = 0$ b)In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to see if they are always equal.vi)It is true for b values of b .i)Show that they are not equal if $a = 3$ and $b = -2$.b)ii) $5(3) + 6(-2)$ $11(3)(-2) = 1$ iii)Are the expressions equal if $a = 1$ and $b = 1$?ii) $5(10) + 6(10)$ $11(10)(10)$	Not equal for $b = -2$ Not equal for $b = -2$ True for $b = 1$ True for $b = 1$ Not true for $b = 0$
iii) What is the value of $7 - 3b$ if $b = -2$?iv) $4(-2) = -8$ iv) What is the value of $4b$ if $b = -2$?v)v) Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.v)vi) Can we say that $7 - 3b = 4b$? Justify your answer.(1) For $b = 1$ $4(1) = 4$ vi) Can we say that $7 - 3b = 4b$? Justify your answer.(2) For $b = 0$ $4(0) = 0$ b) In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to see if they are always equal.vi) It is true for b values of b .ii) Show that they are not equal if $a = 3$ and $b = -2$.b)iii) Are the expressions equal if $a = 10$ and $b = 10$.ii) $5(3) + 6(-2)$ $11(3)(-2) =$ iv) Choose another set of your own values for a and b and check if the expressions are equal.ii) $5(10) + 6(10)$ $11(10)(10)$	Not equal for $b = -2$ Not equal for $b = -2$ True for $b = 1$ True for $b = 1$ Not true for $b = 0$
iv) What is the value of $4b$ if $b = -2$?v)v) Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.v)vi) Can we say that $7 - 3b = 4b$? Justify your answer.(1) For $b = 1$ $4(1) = 4$ vi) Can we say that $7 - 3b = 4b$? Justify your answer.(2) For $b = 0$ $4(0) = 0$ b) In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to see if they are always equal. i) Show that they are not equal if $a = 3$ and $b = -2$. ii) Show that they are not equal if $a = 10$ and $b = 10$. iii) Are the expressions equal if $a = 1$ and $b = 1$? iv) Choose another set of your own values for a and b and check if the expressions are equal.i) $5(10) + 6(10)$ $11(10)(10)$	a, $7 - 3(1) = 4$ and ∴ True for $b = 1$ b, $7 - 3(0) = 7$ and ∴ Not true for $b = 0$
v)Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.(1)For $b = 1$ $4(1) = 4$ vi)Can we say that $7 - 3b = 4b$? Justify your answer.(2)For $b = 0$ $4(0) = 0$ b)In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to see if they are always equal.vi)It is true for b values of b .i)Show that they are not equal if $a = 3$ and $b = -2$.b)ii)Show that they are not equal if $a = 10$ and $b = 10$.ii)iii)Are the expressions equal if $a = 1$ and $b = 1$?iii)iv)Choose another set of your own values for a and b and check if the expressions are equal.iii)	$\therefore \text{ True for } b = 1$ 7 - 3(0) = 7 and $\therefore \text{ Not true for } b = 0$
v) Check if $7 - 3b = 4b$ is true when $b = 1$ and then if $b = 0$.(1) For $b = 1$ $4(1) = 4$ vi) Can we say that $7 - 3b = 4b$? Justify your answer.(2) For $b = 0$ $4(0) = 0$ b) In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to see if they are always equal.vi) It is true for b values of b .i) Show that they are not equal if $a = 3$ and $b = -2$.b)ii) Show that they are not equal if $a = 10$ and $b = 10$.i) $5(3) + 6(-2)$ $11(3)(-2) =$ iii) Are the expressions equal if $a = 1$ and $b = 1$?ii) $5(10) + 6(10)$ $11(10)(10)$	$\therefore \text{ True for } b = 1$ 7 - 3(0) = 7 and $\therefore \text{ Not true for } b = 0$
b = 0. (2) For $b = 0$ (2) For $b = 0$ (3) 4(1) = 4 (4) = 4 (4) = 4 (4) = 4 (5) For $b = 0$ (6) 4(0) = 0 (7) 4(0) = 0 (7) 11 (3) (-2) = 1 (7) 1	$\therefore \text{ True for } b = 1$ 7 - 3(0) = 7 and $\therefore \text{ Not true for } b = 0$
vi) Can we say that $7 - 3b = 4b$? Justify your answer.(2) For $b = 0$ $4(0) = 0$ b) In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to see if they are always equal. i) Show that they are not equal if $a = 3$ and $b = -2$. ii) Show that they are not equal if $a = 10$ and $b = 10$. iii) Are the expressions equal if $a = 1$ and $b = 1$? iv) Choose another set of your own values for a and b and check if the expressions are equal.i) Source and b and check if the expressions are equal.	7 - 3(0) = 7 and ∴ Not true for $b = 0$
b) In Q3d we must compare the expressions $5a + 6b$ and $11ab$ to see if they are always equal. i) Show that they are not equal if $a = 3$ and $b = -2$. ii) Show that they are not equal if $a = 10$ and $b = 10$. iii) Are the expressions equal if $a = 1$ and $b = 1$? iv) Choose another set of your own values for a and b and check if the expressions are equal.4(0) = 0 vi) It is true for b values of b . b)ii) Show that they are not equal if $a = 10$ and $b = 10$. iii) $5(3) + 6(-2)$ $11(3)(-2) = 100$ iii) $5(10) + 6(100)$ $11(10)(100)$	\therefore Not true for $b = 0$
5a + 6b and $11ab$ to see if they are always equal.values of b.i)Show that they are not equal if $a = 3$ and $b = -2$.b)ii)Show that they are not equal if $a = 10$ and $b = 10$.i)iii)Are the expressions equal if $a = 1$ and $b = 1$?ii)iv)Choose another set of your own values for a and b and check if the expressions are equal.iii)	= 1. But it is not true for all
5a + 6b and $11ab$ to see if they are always equal.values of b.i) Show that they are not equal if $a = 3$ and $b = -2$.b)ii) Show that they are not equal if $a = 10$ and $b = 10$.i) $5(3) + 6(-2)$ iii) Are the expressions equal if $a = 1$ and $b = 1$?ii) $5(3) + 6(-2)$ iv) Choose another set of your own values for a and b and check if the expressions are equal.ii) $5(10) + 6(10)$	
i)Show that they are not equal if $a = 3$ and $b = -2$.b)ii)Show that they are not equal if $a = 10$ and $b = 10$.i) $5(3) + 6(-2)$ iii)Are the expressions equal if $a = 1$ and $b = 1$? $11(3)(-2) = 11(3)(-2)(-2) = 11(3)(-2) = 11(3)(-2) = 11(3)(-2) = 11(3)(-2) = 11(3)(-2) = 11(3)(-2)(-2) = 11(3)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2$	
ii)Show that they are not equal if $a = 10$ and $b = 10$.i) $5(3) + 6(-2)$ iii)Are the expressions equal if $a = 1$ and $b = 1$? $11(3)(-2) = 11(3)(-2)$ iv)Choose another set of your own values for a and b and check if the expressions are equal.ii) $5(10) + 6(10)$ $11(10)(10)$	
iii) Are the expressions equal if $a = 1$ and $b = 1$? $11(3)(-2) = 1$ iv) Choose another set of your own values for a and b and check if the expressions are equal.ii) $5(10) + 6(10)$	= 3 and
iv)Choose another set of your own values for a and b and check if the expressions are equal.ii) $5(10) + 6(10)$ 11(10)(10)	= −66 :: not equal
check if the expressions are equal. $11(10)(10)$	•
	$) = 1100 \therefore$ not equal
V) Call we conclude that the statement $3u + 0b = 11ub$	•
	solutions: e.g.: For $a = 0$
	15000000000000000000000000000000000000
11(0)(1) = 0	
	is only true when $a = 1$ and
	conclude that the statement
is not true (for	all values of a and b)
5) Fill in the missing spaces to make the algebraic statements true: 5)	
a) $2x + 4x = $ a) $2 + 4x = 6x$	
b) $2x - 4x = $ b) $2x - 4x = -2x$	
c) $2 + 3x + 4 = - + 6$ c) $2 + 3x + 4 = 3x + 4$	- 6
d) $2 + 3x - 4x = -x + _$ d) $2 + 3x - 4x = -x$	+ 2
e) $-3x + 4 + _ = 2x + _$ e) $-3x + 4 + 5x = 2$	<i>x</i> + 4
f) + 4 = $5x - 4$ f) Some possibilities t	o get $5x$.
e.g.: $2x + 3x - 4 =$	= 5x - 4 or
6x + (-x) - 4 = 0	= 5x - 4
6) Collect like terms and simplify: 6)	
e.g. $2p + 4 - p$ a) $3x + 4x + 2 + 5 =$	7x + 7
= 2p - p + 4 b) $3x - 4x + 2 + 5 =$	-x + 7
= p + 4 c) $-3x - 5x + 2 + 4$	= -8x + 6
a) $2 + 3x + 4x + 5$ b) $2 + 2x - 4x + 5$ d) $-3x + 5x + 2 - 4$	= 2x - 2
b) $2+3x-4x+5$ c) $2-3x+4-5x$	
d) $2 - 3x - 4 + 5x$	

In this worksheet you will focus on: working with verbal and algebraic expressions, the difference between like and unlike terms, adding and subtracting 2 like terms, and using substitution to check answers.

Questions

In the table below the letter g represents any number.
 e.g.: The verbal expression "a number increased by 2" is written as g + 2 but it could also be written as 2 + g. Match the columns. There may be more than one correct answer for some options!

Verbal expression					
1.	A number increased by 6				
2.	A number multiplied by 6				
3.	6 subtract a number				
4.	A number decreased by 6				
5.	A number divided by 6				

ebraic expression
6 + <i>g</i>
6 <i>g</i>
g + 6
g - 6
<i>g</i> (6)
$6 \div g$
6-g
$g \div 6$

2)

a) For each row, shade the like terms in the same colour.

Α.	$7x^{2}$	2 <i>x</i>	7	$2x^2$	
В.	$4p^2$	$4p^2r$	5pr	5	-5rp
C.	3(5 <i>b</i>)	3 <i>b</i> ²	9 <i>b</i>		
D.	6a ²	4a	2a ³	2a ²	7 <i>a</i>

b) Add the like terms you shaded in Q2a for A, B and C. Solve for each row separately.

3) Say whether each statement is TRUE or FALSE. If the statement is false, change the part on the *right* of the equal sign to make the statement true.

a) $2a + 5a = 7a^2$

- b) 2p p = 2p
- c) 10 3b = 7b
- d) 8a + 2b = 10ab

Worksheet 1.4 continued

Qu	estions	
4)	 In this question we substitute values to check if expressions are equal. a) Focus on the expressions from Q3c: 10 - 3b and 7b i) What is the value of 10 - 3b if b = 1? ii) What is the value of 7b if b = 1? iii) What is the value of 10 - 3b if b = 4? iv) What is the value of 7b if b = 4? v) Repeat the checks for these 3 values: b = -2, b = -1 and b = 0. vi) You should have found one value for b where 10 - 3b is equal to 7b. Can you find any oth values of b that will make 10 - 3b equal to 7b? Explain your answer using the idea of like and unlike terms. 	
	 b) In Q3d we must compare the expressions 8a + 4b and 12ab to see if they are always equal. i) Show that they are equal if a = 1 and b = 1. ii) Show that they are not equal if a = 2 and b = 1. iii) Will the statements be equal if a = -1 and b = -1? iv) Find another pair of values where the expressions are not equal. v) Choose another pair of values for a and b and check if the expressions are equal. vi) In general, is the statement 8a + 4b = 12ab always true? Why/why not? 	
5)	Fill in the missing spaces to make the algebraic statements true: a) $k + 4k = \$ b) $3k - 5k = \$ c) $1 + 4k + 4 = \ + 5$ d) $3k - 4k + 2 = 2 - \$ e) $-3k + 5 + \ = 4k + \$ f) $_\ + \ 4 = 3k - 4$	
6)	Collect like terms and simplify: e.g.: $2p + 4 - p$ = 2p - p + 4 = p + 4 a) $3 + 2y + 5y + 6$ b) $3 + 2y - 5y + 6$ c) $3 - 2y + 5 - 6y$ d) $3 - 2y - 5 + 6y$	

An	swe	ers												
Que								Answe	ers					
1)	In the table below the letter g represents any number. e.g.: The verbal expression "a <i>number increased by 2</i> " is written as $g + 2$ but it could also be written as $2 + g$. Match the columns. There may be more than one correct answer for some options!								1) 1. 2. 3.	B; E G				
	Ve	rbal ex	pression			Alge	braic expression		4. 5.					
	1.	A nu	mber incre	eased by 6		A	6 + <i>g</i>							
	2.	A nu	mber mult	iplied by 6	,	В	6 <i>g</i>							
	3.	6 sub	otract a nu	mber		С	<i>g</i> + 6							
	4.	A nu	mber decre	eased by 6	j -	D	<i>g</i> – 6							
	5.	A nui	mber divid	ed by 6		E	<i>g</i> (6)							
						F	$6 \div g$							
						G	6 – <i>g</i>							
						Н	$g \div 6$							
2)									2) a))				
,	a)	For ea	ich row, sh	ade the lil	ke terms ir	n the sam	ne colour.					1	2	
		Α.	$7x^{2}$	2 <i>x</i>	7	$2x^{2}$			Α.	$7x^2$	2 <i>x</i>	7	$2x^{2}$	
		В.	4 <i>p</i> ²	4 <i>p</i> ² <i>r</i>	5pr	5	-5rp		В.	4 <i>p</i> ²	$4p^2r$	5pr	5	-5 <i>rp</i>
		C.	3(5 <i>b</i>)	3 <i>b</i> ²	9b				C.	3(5 <i>b</i>)	3 <i>b</i> ²	9b	- 2	
		D.	6a ²	4a	2 <i>a</i> ³	2a ²	7a		D.	6a ²	4a	2 <i>a</i> ³	2a ²	9a
	b)		ne like terr ow separa		nded in Q2	a for A, E	and C. Solve for		b)	A. 7: B. 5į	$x^2 + 2x^2$ or + (-5 (5b) + 9b	pr) = 0		
3)	fals stat a)	e, chan cement 2a + 2p - 2p	ge the part true. $5a = 7a^2$	t on the <i>ri</i> g			he statement is n to make the		3) a) b) c) d)	False: False:		2a + 5a $2p - p =$ $10 - 3b$ $8a + 2b$	= p = 10 -	

Answers continued

Que	Questions						
4)	In t	his qu	uestion we substitute values to check if expressions are	4)	a)		
.,	equ			.,	ω,	i)	10 - 3(1) = 7
	a)	Foc	us on the expressions from Q3c: $10 - 3b$ and $7b$			ii)	$7(1) = 7 \therefore$ Equal for $b = 1$,
		i)	What is the value of $10 - 3b$ if $b = 1$?			,	10 - 3(4) = -2
		ii)	What is the value of 7 <i>b</i> if $b = 1$?			iv)	
						v)	
		iii)	What is the value of $10 - 3b$ if $b = 4$?			v)	(1) $h = 2 \cdot 10 \cdot 2(-2) = 16$ and
		iv)	What is the value of 7 <i>b</i> if $b = 4$?				(1) $b = -2, 10 - 3(-2) = 16$ and $7(-2) = 14$ by the proves
)	Banast the checks for those 2 values				7(-2) = -14 : Not equal.
		v)	Repeat the checks for these 3 values $b = -2$, $b = -1$ and $b = 0$.				(2) $b = -1, 10 - 3(-1) = 13$ and
		vi)					7(-1) = -7 : Not equal.
		•••	is equal to $7b$. Can you find any other values of b that				(3) $b = 0$, $10 - 3(0) = 10$ and
			will make $10 - 3b$ equal to $7b$? Explain your answer				$7(0) = 0 \therefore \text{ Not equal.}$
						vi)	No other values of b will make $10 - 3b$
			using the idea of like and unlike terms.				equal to $7b.10$ and $-3b$ are unlike terms
	L-)						and cannot be subtracted.
	b)		13d we must compare the expressions $8a + 4b$ and $12abee if they are always equal.$		b)		
		i)	Show that they are equal if $a = 1$ and $b = 1$.			i)	8(1) + 4(1) = 12 and $12(1)(1) = 12$
		ii)	Show that they are not equal if $a = 2$ and $b = 1$.				∴ Equal
		iii)				ii)	8(2) + 4(1) = 20 and $12(2)(1) = 24$
		iv)	Find another pair of values where the expressions are				∴ not equal
			not equal.			iii)	8(-1) + 4(-1) = -12 and
		v)	Choose another pair of values for a and b and check if				12(-1)(-1) = 12. No they won't be
			the expressions are equal.				equal.
		vi)	In general, is the statement $8a + 4b = 12ab$ always			iv)	Many possible solutions: e.g. If $a = 1$ and
			true? Why/why not?			•	b = 0 then $8(1) + 4(0) = 8$ and
							$12(1)(0) = 0 \therefore$ not equal.
						v)	Many possible solutions: e.g. $a = -2$ and
						-,	b = 2, 8(-2) + 4(2) = -8 and
							$12(-2)(2) = -48 \therefore$ not equal.
						vi)	
						v1)	and $b = 1$. Also $8a + 2b$ are unlike terms
							so cannot be added; $10ab$ is the result of
							adding coefficients of <i>a</i> and <i>b</i> getting rid
<u>_</u>	C :0		missing appage to make the clashesis state secure to the	۲۱			of the addition operation.
5)	Fill a)		e missing spaces to make the algebraic statements true: $4k = _$	5)	2)	1	$Ab = \Box b$
			$4\kappa = __$ - 5k = $__$		a) b)		-4k = 5k $-5k = -2k$
			$4k + 4 = _ + 5$		b)		$-5\kappa = -2\kappa$ $-4k + 4 = 4k + 5$
	d)	3k	$-4k + 2 = 2 - _$		c)		-4k + 4 = 4k + 5 -4k + 2 = 2 - k
	e)		$k + 5 + ___ = 4k + ___$		- /		
	f)		$+ \ 4 = 3k - 4$				k + 5 + 7k = 4k + 5
					f)		ny possible solutions e.g.: $2k + k - 4 = -4$ or $5k + (-2k) - 4 = 3k - 4$
C	<u> </u>		he terres and simplify.	~		ЗK	$-4 \text{ or } \mathbf{5K} + (-2\mathbf{K}) - 4 = 3\mathbf{K} - 4$
6)	COL		ke terms and simplify: $2n \pm 4 = n$	6)	- 1	n	
		e.g.	$\begin{array}{l} 2p+4-p\\ = 2p-p+4 \end{array}$				+5y+3+6=7y+9
			= 2p - p + 4 $= p + 4$				-5y + 3 + 6 = -3y + 9
	a)	3+	2y + 5y + 6				y - 6y + 3 + 5 = -8y + 8
			2y - 5y + 6		a)	-2	y + 6y + 3 - 5 = 4y - 2
			2y + 5 - 6y				
	d)	3 –	2y - 5 + 6y				
				I			

In this worksheet you will focus on: working with verbal and algebraic expressions, adding and subtracting 3 or 4 like terms, and using substitution to check answers.

Qu	estions		
1)	In the table below the letter m represents any number. Match the col	umns. Th	ere may be more that
	one correct answer for some options!		
	Verbal expression	Alge	ebraic expression
	e.g. The product of a number and 5 is then increased by 2	e.g.	. 5 <i>m</i> + 2
	1. Add 4 to the product of a number and 5	А	5m + m
	2. Subtract 4 from the product of a number and 5	В	-4 + 5m
	3. Add a number to the product of that number and 5	С	5m - 4
	4. Subtract a number from the product of that number and 5	D	m-5m
	5. Add a number to the product of that number and negative 5	E	5m-m
		F	-5m + m
		G	5m + 4
	Write a verbal expression for each of the following:a) $y-3$ b) $y+20$ c) $3y+20$ d) 20Simplify each expression:	- 3y	e) $3y - y$
	a) $6 + 6y + 10 - 5y$ b) $9ab + 7b + 4b - 2ab$ c) $7x^2 + 3 - 3x^2 + 6$ c) $7x^2 + 3 - 3x^2 + 5 - 3x^2 +$	Write th the term variable constan	answers: e variable term or n with more than one first, then write the t term. Write the s in alphabetical order
4)	 In this question we will use substitution to check the simplification of a) Focus on Q3a: 6 + 6y + 10 - 5y i) Determine the value of the unsimplified expression if y = 3 ii) Determine the value of your answer to Q3a if y = 3 iii) Choose another value for y and check if you get the same ans question and for your answer to Q3a. 	-	
	 b) Focus on Q3c: 7x² + 3 - 3x² + 6 i) Nikita says: 7x² + 3 - 3x² + 6 = 10x² + 3 Choose 3 values for x to show her that her answer is not corr ii) Nikita says that if x = 1 or x = -1 then her answer is correct (1) Check by substituting x = 1 and for x = -1. (2) Does this mean that 10x² + 3 is the correct answer? Expl 		
5)	Say whether each statement is TRUE or FALSE. If the statement is false <i>left</i> of the equal to sign to make the statement true. You can substitut a) $6a + 2b + 3a = 11ab$ c) $6pr - 5 + pr$ b) $5k^2 - 2k^2 + k^2 = 4k^2$ d) $4c - 4c + 8c$	e values t $= 6pr + $	to check.

An	swers			
	stions			Answers
1)	In the table below the letter <i>m</i> represents any number. Match correct answer for some options!	the columns. The	ere may be more than one	1)
	Verbal expression	A	lgebraic expression	
	e.g. The product of a number and 5 is then increased by 2	е	e.g. 5 <i>m</i> + 2	1. G
	1. Add 4 to the product of a number and 5	A	5m + m	2. B and
	2. Subtract 4 from the product of a number and 5	В	-4 + 5m	C C
	3. Add a number to the product of that number and 5	С	5m - 4	3. A
	4. Subtract a number from the product of that number and		m-5m	4. E
	5. Add a number to the product of that number and nega			5. F
		F		
		G	5m + 4	
2)	Write a verbal expression for each of the following:2)Beca) $y-3$ a)b)b) $y+20$ b)c) $3y+20$ c)d) $20-3y$ d)e) $3y-y$ e)	Subtract 3 from Add 20 to a nur Add 20 to the p Subtract the pr		
3)	Simplify each expression:	3)		
	a) $6+6y+10-5y$ b) $9ab+7b+4b-2ab$ c) $7x^2+3-3x^2+6$ c) $7x^2+x+3-3x^2+6$ d) $5d+3e+12f+2d-2db$ e) $cd+5cd+c-cd$ f) $k-m+m-k+km$		-,, .	
4)	Answer to Q4a and Q4b(i)	-	Answer to Q4b(ii)	
	a) Focus on Q3a: $6 + 6y + 10 - 5y$	b		
	i) $6 + 6(3) + 10 - 5(3) = 19$		ii)	2
	 ii) (3) + 16 = 19 iii) Many possible solutions. The answers to the unsimp and simplified expressions will always be the same. e.g. if y = 2, then 6 + 6(2) + 10 - 5(2) = 18 and (2) + 16 = 18. b) Focus on Q3c: 7x² + 3 - 3x² + 6 i) Many possibilities to show Nikita is not correct. e.g. If x = 0, x = 2, x = -2 then 	ified	(1) $7(1)^2 + 3 - 3(1)^2$ $10(1)^2 + 3^2$ Correct for if $x = 3^2$ $7(-1)^2 + 3 - 3(-10(-1)^2 + 3 = 1)^2$ Correct for if $x = -10^2$ (2) No. We have used show that Nikita is	3 = 13 1 $-1)^{2} + 6 = 13$ and 3 -1 d three values to
	$7(0)^2 + 3 - 3(0)^2 + 6 = 9$ and $10(0)^2 + 3 = 3$, $7(2)^2 + 3 - 3(2)^2 + 6 = 25$ and $10(2)^2 + 3 = 43$, $7(-2)^2 + 3 - 3(-2)^2 + 6 = 25$ and $10(-2)^2 + 3 = 32$		there are only two her statement true all values of <i>x</i> . So be the correct ans	values that make e, it is not true for $10x^2 + 3$ cannot
5)	TRUE or FALSE. If false, change the expression on the <i>left</i> of the sign to make the statement true. a) $6a + 2b + 3a = 11ab$ c) $6pr - 5 + pr = 6pr$ b) $5k^2 - 2k^2 + k^2 = 4k^2$ d) $4c - 4c + 8c = 8c$	a ⊦5	Answers a) and d)) False. Many possible sol e.g. $6a \times 2b - ab = 11$ 6ab + 2ab + 3ab = 11) False. Many possible sol	ab or ab
	Answers Q5b and Q5c b) True c) True		e.g. $5pr + 5 + pr = 6pr$ 7pr + 5 - pr = 6pr + 7pr	

In this worksheet you will focus on: verbal and algebraic expressions, adding and subtracting 3 or 4 like terms and checking solutions.

Qu	estions									
1)	In the table below the letter m represents any number. Match the col	umns. There may be more than								
	one correct answer for some options!									
	Verbal expression	Algebraic								
		expression								
	e.g. The product of a number and 6 is then increased by 3	e.g. 6 <i>m</i> + 3								
	1. Add 2 to the product of a number and 7	A $7m+m$								
	2. Subtract 2 from the product of a number and 7	B $-2 + 7m$								
	3. Add a number to the product of that number and 7	C 7 <i>m</i> - 2								
	4. Subtract a number from the product of that number and 7	D $m-7m$								
	5. Add a number to the product of that number and negative 7	E $7m-m$								
		F -7m + m								
		G 7 <i>m</i> + 2								
2)	Write a verbal expression for each of the following:									
-,	a) $p-4$ b) $p+15$ c) $5p+15$ d) $15-52$	v = e - 5v - v								
)))))								
3)	Simplify each expression:									
	a) $4 + 4y + 11 - 3y$ d) $6a + 4b + 11c + 2a - b$	- 2 <i>c</i>								
	b) $9pr + 7p + 4r - 2pr$ e) $7cd + cd + 2c - cd$									
	c) $8y^2 + 2 - 2y^2 - 5$ f) $r - s + s - r + sr - sr$									
4)	In this question use <u>substitution</u> to check the simplification of two of e	examples from Q3.								
,										
	a) For Q3a, Jabu says: "4 add 4 add 11 subtract 3 gives me 16. So the	answer is 16y".								
	i) Substitute $y = 3$ to show Jabu that his answer is not correct.									
	ii) Jabu then says to you: "Check for $y = 1$, it works!" Is Jabu cor									
	iii) Show how would you convince Jabu that the correct answer is	5.15 + y.								
	b) The correct answer for Q3f is zero!									
	i) Choose any values for s and r, and check that $r - s + s - r + s$	sr - sr = 0								
	ii) Choose another pair of values and check again.									
	iii) Thabi and Dumi tried to write the expression by changing the	order of some terms. Check if								
	their expressions are correct:									
	Thabi: $r - r - s + s + sr - sr$									
	Dumi: $sr - sr + r - 2s - r$									
5)	Say whether each statement is TRUE or FALSE. If the statement is false	e, change the expression on the								
,	<i>left</i> of the equal sign to make the statement true. You can substitute v	· • •								
	a) $7x + 3y - 3x = 7xy$ c) $4ab - 5 + ab = 4ab - 5$									
	b) $6m^2 - m^2 + 4m^2 = 9m^2$ d) $3p - 3p + 7p = 7p$									

lue	estions				Answers
)	In the table below the letter <i>m</i> represents any one correct answer for some options!	number. Match the colur	nns. There ma	ly be more than	1)
	Verbal expression			aic expression	1. G
	e.g. The product of a number and 6 is then in	creased by 3	e.g. 6n		2. B and C
	1. Add 2 to the product of a number and			m + m	3. A
	2. Subtract 2 from the product of a number and			-2 + 7m	4. E
	3. Add a number to the product of that nu			$\frac{2}{m-2}$	5. F
	4. Subtract a number from the product of			n - 7m	
	5. Add a number to the product of that nu			$\frac{m}{m-m}$	
	3. Add a hamber to the product of that h	amber and negative /		-7m + m	
				m + 2	
)	Write a verbal expression for each of the following: a) $p - 4$ b) $p + 15$ c) $5p + 15$ d) $15 - 5y$ e) $5y - y$ Simplify each expression:	b) Add 15 to c) Add 15 to d) Subtract t	from a number a number the product of he product of	er f 5 and a number 5 and a number fi the product of 5	rom 15
	b) $9pr + 7p + 4r - 2pr$ e) $7cd + c$ c) $8y^2 + 2 - 2y^2 - 5$ f) $r - s + 1$	s - r + sr - sr	c) 6y	r + 7p + 4r $r^{2} - 3$	e) $7cd + 2c$ f) 0
)	Solution to Q4a a) Q3a: $4 + 4y + 11 - 3y$ i) $4 + 4(3) + 11 - 3(3) = 18 \text{ and } 16(3)$ $18 \neq 48 \text{ Jabu's answer of } 16y \text{ is incomp}$ ii) $4 + 4(1) + 11 - 3(1) = 16 \text{ and } 16(3)$ Yes Jabu is correct when $y = 1$ iii) Convincing Jabu: $4 + 4(3) + 11 - 3(3)$ and my answer $15 + (3) = 18;$ $18 = 18 \text{ Your answer is } 48. 18 \neq -4$ If $x = -3$: My answer is 4 + 4(-3) + 11 - 3(-3) = 12 and 15 + (-3) = 12; 12 Your answer is $16(-3) = -48; 12$ If $x = 0$: My answer is 4 + 4(0) + 11 - 3(0) = 15 and 15 + (0) = 15; 15 = 3 Your answer is $16(0) = 0; 15 = 3$	iii) Co iii) Co iiii) Co iii) Co	ntinued hen we substit + y both exp he BUT when we d 16y both ex- ce that was we fif: $r - s + s -$ Own choice (2) - (1) - Still get 0 we Thabi: e.g. we (2) - (2) - which is cor Dumi: e.g. we (1)(2) - (1) is incorrect	we substituted integressions gave the hen $y = 1$ r + sr - sr answers e.e.g. $r = 2; s = 2; s = 1; s = 1$	+ 11 - 3y and a same answer <i>each</i> to $4 + 4y + 11 - 3$ the same answer <i>only</i> wer is zero! 1 gives)(2) - (1)(2) = 0 f values 1 (2) - (1)(2) = 0 1 (1) - (2) = -2 which
;)	, , , , , ,	e the expression on the <i>le</i> - $5 + ab = 4ab - 5$ 3p + 7p = 7p	eft of the equa	a) Fa b) Ti c) Fa	alse $4x + 3y$ rue alse $5ab - 5$ rue

In this worksheet you will focus on: verbal and algebraic expressions which include the minus symbol (–); adding and subtracting 3 or more like terms in algebraic expressions.

ons								
the table below the letter y represents any number. Match ere may be more than one correct answer.	n the columns.							
/erbal expression	Algebraic							
· · · · · · · · · · · · · · · · · · ·	expression							
e.g. A number is multiplied by negative 3 then 2 is subtracted	ed $-3y-2$							
rom the product.								
. A number is subtracted from the product of 8 and 5	A 7 <i>y</i> - 6							
 A number is subtracted from the product of 8 and that same number 	B = -7y - 6							
3. The product of 8 and an unknown number is increased	by 2 C $-7y + 6$							
Six less than 7 times a number	D $7y+6$							
5. Six less than negative 7 times a number	E $8k-k$							
5. Six more than negative 7 times a number	F $8 \times 5 - n$							
	G 2 + 8x							
	H 8 <i>p</i> + 2							
rite a verbal expression for each of the following:	× 4							
b) $3d + 6$ b) $-3d - 6$	c) $\frac{x-4}{2}$							
e table contains 6 expressions (some of them have only 1 t	term).							
$3x$ $2x^2$	4							
	+x							
pose expressions from the table to add/subtract so that yo	u get the answers below.							
e.g. from $3x$; $-x + 1$ and 4, I can get $2x + 5$								
b) $2x^2 + x + 11$ b) $-4x + 1$	c) $7x + 7$							
nplify:								
Write answers in descending powers of the variable.	e.g. $-3p + 5p^2 + 7$							
is written $5p^2 - 3p + 7$ because a power of 2 is bigg	er than a power of 1							
b) $7a - 7a^2 - 2a^2$ b) $2a - 7a^2 + 2a^2$	c) $-5ab - 7ba + ab + 6ba$							
1) $5ac + 9ca - 2ca - ac$ e) $5m - 4m + 3m - 2m + 3m - 3m + 3m - 3m + 3m - 3m + 3m + 3$	$-m$ f) $-t^2 - 2t^2 + 2y^2 - 3y^2$							
$\int Juc + Jcu = 2cu = uc = C \int Jin = Tin + Jin = 2in + T$	$111 11 1 21 \pm 2y = 3y$							

An	iswers			
Qu	estions			Answers
1)	In the table below the letter <i>y</i> represents any r There may be more than one correct answer.	5. 1)		
	Verbal expression		Algebraic expre	ission 1. F
	e.g. A number is multiplied by negative 3 the is subtracted from the product.	n 2	e.g. $-3y - 2$	2 5
	1. A number is subtracted from the produ of 8 and 5	ct	A 7 <i>y</i> - 6	4. A 5. B
	2. A number is subtracted from the produ of 8 and that same number	ct	B -7y-6	6. C
	3. The product of 8 and an unknown number is increased by 2		C $-7y+6$	
	4. Six less than 7 times a number		D 7 <i>y</i> +6	
	5. Six less than negative 7 times a number		E $8k-k$	
	6. Six more than negative 7 times a numb	er	$F \qquad 8 \times 5 - 1$	<u>n</u>
			G $2 + 8x$ H $8p + 2$	
			11 00 12	
2)	Write a verbal expression for each of the follow	ving:	2) The following a	are possible verbal expressions
	a) $3d + 6$		a) 6 is addec	I to the product of a number and 3.
	b) $-3d - 6$		b) 6 is subtra	acted from the product of a number and negative 3.
	c) $\frac{x-4}{2}$		c) 4 subtract	ted from a number is then divided by two.
3)	The table contains 6 expressions (some of then	n have	only 1 term).	3) The expressions can be combined in different
				orders by they must produce the correct
	$3x$ $2x^2$	4		expression. (2) $(2 + 1) + (4)$
	$-3x+4 \qquad -x+1$	7 + x		a) $(2x^2) + (7 + x) + (4)$ = $2x^2 + x + 11$
	Chaose expressions from the table to add/subt	ract co	that you got the	-2x + x + 11
	Choose expressions from the table to add/subtranswers below. e.g. from $3x$; $-x + 1$ and 4, 1 c			b) $(-x+1) - (3x) = -4x + 1$
	a) $2x^2 + x + 11$	ange	22 1 3	
	b) $-4x + 1$			c) $(7+x) - (-3x+4) + (4) + (3x)$
	c) $7x + 7$			=7x+7
4)				nding powers of the variable where applicable
	a) $7a - 7a^2 - 2a^2$	a	,	
	b) $2a - 7a^2 + 2a^2$ c) $-5ab - 7ba + ab + 6ba$	b	,	
	c) $-5ab - 7ba + ab + 6ba$ d) $5ac + 9ca - 2ca - ac$	c d		
	a) $5uc + 9cu - 2cu - uc$ e) $5m - 4m + 3m - 2m + m$	a e		
	f) $-t^2 - 2t^2 + 2y^2 - 3y^2$	f)	, 	
	,, -, -,	.,	, <i>St</i> y	

In this worksheet you will focus on: verbal and algebraic expressions which include the minus symbol (-); adding and subtracting 3 or more like terms in algebraic expressions.

L)	In the table below the letter n represents any number. Match the	e columns.	
	There may be more than one correct answer.		
	Verbal expression	Algebraic	
	Verbarexpression	expression	
	e.g. A number is multiplied by negative 3 then 2 is subtracted from the product.	e.g. $-3n-2$	
-	1. A number is subtracted from the product of 3 and 4	A $4 + 5n$	
ŀ	2. A number is subtracted from the product of 5 and that		
	same number	B $-7y-6$	
F	3. The product of 5 and a number is decreased by 4	C 4.3 – n	
F	4. Four more than 5 times a number	D 12-n	
F	5. Four more than negative 5 times a number	E $4-5n$	
-	6. Four less than negative 5 times a number	F $n-5n$	
L		G $-5n-4$	
		H $5n - 4$	
2)	Write a verbal expression for each of the following:		
	a) $2m + 5$		
	b) $-2k - 4$		
	c) $\frac{z+3}{4}$		
	4		
a)	The table contains 6 expressions (some of them have only 1 term)	
	$2a$ $2a^2$ 5		
	$-3a + 5$ $4 - a^2$ $a + 3$		
	Choose expressions from the table to add/subtract so that you ge	et the answers below.	
	e.g. from 2 <i>a</i> ; $a + 3$, I can get $3a + 3$	-1 - 2 - 2 + 12	
	a) $3a + 8$ b) $3a^2 + 1$	c) $2a^2 + 13$	
.)	Simplify.		
		e) $-5ab - 7ba + ab + 6ba$	
	b) $-b^2 - 2b^2 + 2b - 3b$ d) $8m - 7 + 6m - 5m + 4m$	f) $6mn - 9nm - 2mn + nm$	

Qu	estions		Answers
1)	In the table below the letter n represents any number. Match the colu There may be more than one correct answer.	mns.	1)
Γ	Verbal expression	Algebraic expression	 C and D No match
	 e.g. A number is multiplied by negative 3 then 2 is subtracted from the product. 1. A number is subtracted from the product of 3 and 4 2. A number is subtracted from the product of 5 and that same number 3. The product of 5 and a number is decreased by 4 4. Four more than 5 times a number 5. Four more than negative 5 times a number 6. Four less than negative 5 times a number 	e.g. $-3n - 2$ A $4 + 5n$ B $-7y - 6$ C $4.3 - n$ D $12 - n$ E $4 - 5n$ F $n - 5n$ G $-5n - 4$ H $5n - 4$	5n - n 3. H 4. A 5. E 6. G
)	a) $2m + 5$ b) $-2k - 4$ c) $\frac{z+3}{4}$ The table contains 6 expressions (some of them have only 1 term) 2a $2a^2 5$	verbal expressions dded to the product of 2 an subtracted from negative 2 umber is added to 3 and th 3) a) $(2a) + (a + 3) + (5)$ b) $(2a^2) - (4 - a^2) + 3$	2 and a number. en the sum is divided by 4. = 3a + 8
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(3) - 3a + 1) + (a + 3) + (2a) + (5)
1)	Simplify.4)Answers are in descera) $5a - 10a^2 + 5a$ a) $-10a^2 + 10a$ ob) $-b^2 - 2b^2 + 2b - 3b$ b) $-3b^2 - b$ orc) $2y - 5y^2 + 2y$ c) $-5y^2 + 4y$ ord) $8m - 7 + 6m - 5m + 4m$ d) $13m - 7$ e) $-5ab - 7ba + ab + 6ba$ e) $-5ab$ f) $6mn - 9nm - 2mn + nm$ f) $-4mn$	$-b - 3b^2$	e where applicable

In this worksheet you will focus on substituting values into familiar formulae, and into different algebraic expressions.

Ques	stions	
1) T	The formula for the area of a rectangle is: Area = le	ngth x breadth.
Т	he area is shaded and we will abbreviate this as A :	$= L \times B$ Length (L)
t c	a) If $L = 4$ cm and $B = 3$ cm, calculate the area in b) If $L = 12$ cm and $B = 8$ cm, calculate the area in c) If $L = 3,5$ cm and $B = 2$ cm, calculate the area in d) If $L = 7$ cm and $A = 14$ cm ² , calculate the breac b) If $B = 4$ cm and $A = 24$ cm ² calculate the breac	n cm ² .
e f	e) If $B = 4$ cm and $A = 24$ cm ² , calculate the lengt	
) If $L = x$ cm and $B = 5$ cm, give an expression for g) If $L = 2a$ cm and $B = (a + 4)$ cm, give an expre	
	The formula for the perimeter of a rectangle is: Per	imeter = 2 ×length + 2× breadth
V	We will abbreviate this as: $P = 2L + 2B$	L
a	a) If $L = 4$ cm and $B = 3$ cm, calculate the perime	
	b) If $L = 12$ cm and $B = 8$ cm, calculate the perim	-
	:) If $L = 3,5$ cm and $B = 2$ cm, calculate the area i	
	d) If $L = 7$ cm and $P = 20$ cm ² , calculate the bread	
e f	e) If $P = 66$ cm and $B = 8$ cm ² , calculate the lengt) If $L = x$ cm and $B = 5$ cm, give an expression for	
	g) If $L = 4a$ cm and $B = (a + 1)$ cm , give an expression of	
٤	f_{j} f_{j	
2)		b) Circ two actions of up have for an and a set
ĉ	a) If $a = 5$ and $b = -2$, calculate the value of: i) $a + b$	 b) Give two pairs of values for m and n so that:
	ii) <i>ab</i>	i) $m + n$ gives an answer of 5
	ab iii) $-ab$	ii) <i>mn</i> gives an answer of 5
	iv) 5 <i>ab</i>	
3) (Given the expression: $y = x + 3$.	
a	b) Determine the value of y if $x = 8$.	
Ł	b) What value must we substitute for x so that y =	= 8? Try to do this "in your head".
C	Give 3 values that we can substitute for x so that	t y will be greater than 8.
C	d) What value must we substitute for x to make y	= 0?
4) (Consider the following rule: $L = 2M + 3$	
	Match the M -value to the statement about the L -va	lue
e	e.g. If $M = 5$, then $L = 2(5) + 3 = 13$, and we can say	y L is a prime number
ſ	<i>M</i> -value Statement about the <i>L</i> -value	
ŀ	a) 4 A. L must be greater than -8 be	ut less than 0
ľ	b) -5 B. L must be less than 0 but gre	ater than -4
	c) -3 C. L must be a negative multiple	e of 5
	d) -9 D. L must be a prime number	
-	c) -3 C. L must be a negative multiple	

Answers					
	estions	Answers			
Que			Answers		
1)	The formula for the area of a rectangle is: Area = length x brows. The area is shaded and we will abbreviate this as $A = L \times B$ a) If $L = 4$ cm and $B = 3$ cm, calculate the area in cm ² . b) If $L = 12$ cm and $B = 8$ cm, calculate the area in cm ² . c) If $L = 3,5$ cm and $B = 2$ cm, calculate the area in cm ² . d) If $L = 7$ cm and $A = 14$ cm ² , calculate the breadth in cm ² . e) If $B = 4$ cm and $A = 24$ cm ² , calculate the length in cm. f) If $L = x$ cm and $B = 5$ cm, give an expression for the area g) If $L = 2a$ cm and $B = (a + 4)$ cm, give an expression for the area of a .	a) $A = 4 \times 3 = 12$ b) $A = 12 \times 8 = 96$ c) $A = 3,5 \times 2 = 7$ d) $14 = 7 \times B$ e) $24 = L \times 4$ f) $A = x \times 5 = 5x$ g) $A = 2a(a + 4)$ $= 2a^2 + 8a$ cm	$a \text{ cm}^2$ cm^2 B = 2 cm L = 6 cm cm^2 a^2 a^2 typet be able to		
2)	The formula for the perimeter of a rectangle is:	2)	,		
_,	 Perimeter = 2 x length + 2 x breadth We will abbreviate this as: P = 2L + 2B a) If L = 4 cm and B = 3 cm, calculate the perimeter in cm b) If L = 12 cm and B = 8 cm, calculate the perimeter in cm c) If L = 3,5 cm and B = 2 cm, calculate the area in cm². d) If L = 7 cm and P = 20 cm², calculate the breadth in cm e) If P = 66 cm and B = 8 cm², calculate the length in cm. f) If L = x cm and B = 5 cm, give an expression for the periof x. g) If L = 4a cm and B = (a + 1) cm, give an expression for the period and a second sec	a) $P = 2(4) + 2(3)$ b) $P = 2(12) + 2(8)$ c) $P = 2(3,5) + 2(2)$ d) $20 = 2(7) + 2B$ e) $66 = 2L + 2(8)$ f) $P = 2(x) + 2(5)$ g) $P = 2(4a) + 2(a)$ = 8a + 2a + 2 (may not yet be a	f(t) = 40 cm f(t) = 11 cm f(t) B = 3 cm f(t) L = 25 cm f(t) = 2x + 10 cm f(t) + 10a + 2 cm ble to produce		
	perimeter in terms of <i>a</i> .				
3)	 e) If a = 5 and b = -2 determine the value of: v) a + b vi) ab vii) -ab viii) 5ab f) Give two pairs of values for m and n so that: iii) m + n gives an answer of 5 iv) mn gives an answer of 5 	3) a) i) 3 ii) -10 iii) 10 iv) -50 b) There are many possibilities i) e.g. $m = 0$ and $n = 5$; $m = -$ $m = 1\frac{1}{2}$ and $n = 3\frac{1}{2}$ ii) e.g. $m = 1$ and $n = 5$; $m = -$ $m = 5$ and $n = 1$; $m = \frac{1}{2}$ and	1 and $n = -5$;		
4)	Given the expression: $y = x + 3$.4)c) Determine the value of y if $x = 8$.a) $y = 11$ d) What value must we substitute for x so that $y = 8$? Try to do this "in your head".b) $x = 5$ g) Give 3 values that we can substitute for x so that y will be greater than 8.c) Any value where $x > 5$ h) What value must we substitute for x to make $y = 0$?d) $x = -3$				
5)	Consider the following rule: $L = 2M + 3$ Match the M -value to the statement about the L -valuee.g. If $M = 5$, then $L = 2(5) + 3 = 13$, and we can say L is a M -value $e)$ 4 $f)$ -5 B. L must be greater than -8 but lessB. L must be less than 0 but greater than -8 but less	M $L = 2M + 3$ han 0 a) 4 $L = 2(4) + 3$ b) -5 $L = 2(-5) + 3$	3 = -7 A		
	g)-3C.L must be a negative multiple of 5h)-9D.L must be a prime number	c) -3 $L = 2(-3) +$ d) -9 $L = 2(-9) +$			

In this worksheet you will focus on: a variable having a specific value or a variety of values.

Qu	Questions		
1)	The box contains 3 examples of rules for calculating the value of y. A. $y = x - 2$ B. $y = 2 - x$ C. $y = 2x - 4$		
	 a) For each example, determine by inspection what value of x will make y = 10. e.g. If y = x + 2, then y = 6 when x = 4. b) For each example, determine the value of y if x = 10. c) Make up your own rule for y = and find an x-value that will make the y-value larger than 20. e.g. Say I choose y = 3 + x. If x = 19, then y = 3 + 19 = 22 which is bigger than 20 		
2)	Give 3 possible values for a and b to make the statement true: e.g. If $a + b = 4$, then $a = 3, b = 1$; OR $a = 2, b = 2$; OR $a = 6, b = -2$, OR $a = \frac{1}{2}, b = 3\frac{1}{2}$, etc. a) $a + b = 10$ b) $a - b = 10$ c) $b - a = 10$		
3)	 a) If c = -2 and d = 3, determine the value of cd. b) If c = 2 and d = -3, determine the value of cd. c) You should get the same answer for Q3a and Q3b. Why does this happen? d) If c = -2 and d = -3, determine the value of cd. e) Give two pairs of values for c and d so that the expression c + d gives the same answer as your answer in Q3d. 		
4)	Here are two rules: 1: $C = D + 4$ 2: $C = double D$ a) If $D = 3$, which of the rules will produce a larger value of C? b) If $D = -1$, which of the rules with produce a smaller value of C? c) If $D = 4$, will either of the rules produce a C-value equal to 8? d) If $D = -3$, will either rule produce a C-value that is bigger than -8 but less than 0?		

Answers				
Questions		Answers		
1)	 The box contains 3 examples of rules for calculating the value of <i>y</i>. A. y = x - 2 B. y = 2 - x C. y = 2x - 4 a) For each example, determine by inspection what value of <i>x</i> will make y = 10. e.g. If y = x + 2, then y = 6 when x = 4. b) For each example, determine the value of <i>y</i> if x = 10. c) Make up your own rule for y =and find an x-value that will make the y-value larger than 20. e.g. Say I choose y = 3 + x. If x = 19, then y = 3 + 19 = 22 which is bigger than 20 	1) a) A. $x = 12$ B. $x = -8$ C. $x = 7$ b) A. $y = 8$ B. $y = -8$ C. $y = 16$ c) Multiple solutions e.g. $y = \frac{x}{2}$; if $x = 100$ then $y = 50$ which is bigger than 20		
2)	Give 3 possible values for <i>a</i> and <i>b</i> to make the statement true: e.g. If $a + b = 4$, then $a = 3, b = 1$; OR $a = 2, b = 2$; OR $a = 6, b = -2$, OR $a = \frac{1}{2}, b = 3\frac{1}{2}$, etc. a) $a + b = 10$ b) $a - b = 10$ c) $b - a = 10$	2) Multiple solutions, e.g.: a) $a = 2$ and $b = 8$; $a = \frac{1}{2}$ and $b = 9 \frac{1}{2}$; a = -3 and $b = 13b) a = 15 and b = 5; a = 11\frac{1}{2} and b = 1\frac{1}{2};a = -3$ and $b = -13c) a = 6 and b = 16; a = 2\frac{1}{2} and b = 12\frac{1}{2};a = -6$ and $b = 4$		
3)	 a) If c = -2 and d = 3, determine the value of cd. b) If c = 2 and d = -3, determine the value of cd. c) You should get the same answer for Q3a and Q3b. Why does this happen? d) If c = -2 and d = -3, determine the value of cd. e) Give two pairs of values for c and d so that the expression c + d gives the same answer as your answer in Q3d. 	 3) a) -6 b) -6 c) Because in Q3a we multiply a negative by a positive and in Q3b we multiply a positive by a negative and both result in a negative number. Since the numerals are both 2 and 3 we get -6 in both cases. d) 6 e) Multiple solutions, e.g.: c = -3 and d = 9; c = 1 and d = 5; c = ¹/₄ and d = 5³/₄ 		
4)	Here are two rules: 1: $C = D + 4$ 2: $C = double D$ a) If $D = 3$, which of the rules will produce a larger value of b) If $D = -1$, which of the rules with produce a smaller value c) If $D = 4$, will either of the rules produce a C-value equal d) If $D = -3$, will either rule produce a C-value that is bigg -8 but less than 0?	4) a) $C = (3) + 4 = 7$ C = double D = 2(3) = 6 Rule 1 b) $C = (-1) + 4 = 5$ C = double D = 2(-1) = -2 Rule 2 Rule 2		

In this worksheet you will focus on: a variable having a specific value or a variety of values.

Qu	Questions			
1)	The box contains 4 examples of rules for calculating the value of y. A. $y = 2x + 10$ B. $2x - 10 = y$ C. $y = 12 - x$ D. $y = x - 12$ a) For each example, determine what value of x will make $y = 10$. e.g. If $y = x + 2$, then $y = 6$ when $x = 4$ b) Which example will give a y-value less than 4 when $x = 6$?			
2)	Give 3 possible values for each letter to make the statement true: e.g. If $a + b = 4$, then $a = 3, b = 1$; OR $a = 2, b = 2$; OR $a = 6, b = -2$, OR $a = \frac{1}{2}, b = 3\frac{1}{2}$, etc. a) $b - a = 1$ b) $a - 2b = 0$ c) $a + b$ is even and less than 20			
3)	Here are two rules: 1: T1 = D + 3 2: T 2= double D a) Give a value for D that will make T1 = 20. b) Give a value for D that will make T2 = 20. c) Give a value for D that will make T1 > T2. d) Give a value for D that will make T1 = T2. e) If $D = -3$, which rule will produce the larger answer? f) If $D = -\frac{1}{2}$, will either rule produce a value that is bigger than -1 but less than 6?			
4)	 a) If m = 6 and n = 2, determine the value of m - n. b) If m = 6 and n = -2, determine the value of m + n. c) You should get the same answer for Q4a and Q4b. Why does this happen? d) You are told that A = mn - n + m i) If m = -2 and n = -3, determine the value of A. ii) Give two pairs of values for m and n so that the value of A is less than 0. 			

Answers					
Qu	Questions		Answers		
1)	The box contains 4 examples of rules for calculating the value of y. E. $y = 2x + 10$ F. $2x - 10 = y$ G. $y = 12 - x$ H. $y = x - 12$ a) For each example, determine what value of x will make $y = 10$. e.g. If $y = x + 2$, then $y = 6$ when $x = 4$ b) Which example will give a y-value less than 4 when $x = 6$?	1)	a) b)	A. $x = 0$ B. $x = 10$ C. $x = 2$ D. $x = 22$ Example D	
2)	Give 3 possible values for each letter to make the statement true: e.g. If $a + b = 4$, then $a = 3, b = 1$; OR $a = 2, b = 2$; OR $a = 6, b = -2$, OR $a = \frac{1}{2}, b = 3\frac{1}{2}$, etc. a) $b - a = 1$ b) $a - 2b = 0$ c) $a + b$ is even and less than 20	2)	a) b)	Itiple solutions, for example: $a = 2$ and $b = 3$; $a = \frac{1}{2}$ and $b = 1\frac{1}{2}$; a = -3 and $b = -2a = 10 and b = 5; a = 1 and b = \frac{1}{2};a = -6$ and $b = 3a = 10 and b = 2; a = \frac{1}{2} and b = 5\frac{1}{2};a = -3$ and $b = -51$	
3)	Here are two rules: 1: $T1 = D + 3$ 2: $T2 =$ double D a) Give a value for D that will make T1 = 20. b) Give a value for D that will make T2 = 20. c) Give a value for D that will make T1 > T2. d) Give a value for D that will make T1 = T2. e) If $D = -3$, which rule will produce the larger answer? f) If $D = -\frac{1}{2}$, will either rule produce a value that is bigger than -1 but less than 6?	3)	a) b) c) d) e) f)	D= 7 D= 0 Multiple solutions, for example: D= -1 D= 3 Rule 1 Yes, rule 1	
4)	 a) If m = 6 and n = 2, determine the value of m - n. b) If m = 6 and n = -2, determine the value of m + n. c) You should get the same answer for Q4a and Q4b. Why does this happen? d) You are told that A = mn - n + m i) If m = -2 and n = -3, determine the value of A. ii) Give two pairs of values for m and n so that the value of A is less than 0. 	4)	a) b) c) d)	4 4 Because subtracting a positive is the same as adding a negative i) A= 7 ii) Multiple solutions e.g. m = 5 and $n = -10$; $m = \frac{1}{2}$ and $n = 10$	

In this worksheet you will focus on: a variable as part of a product, using the distributive law when monomials are positive and binomials have positive terms.

Questions	
1)	
a) Expand:	
i) $3(p) =$	ii) $3(p^2) =$ iii) $3(2p) =$ iv) $3(2+p) =$
, ,	at operation is between the 3 and the brackets?
	rms in your answer to Q1a(iv)?
o,,, ou jou got - to	
2) Look at examples A to D	in the box below:
,) Write down the monomial for each example.
B. $3p(p+2)$ k) Write down the binomial for each example.
C. $3p(p^2+2)$ C) Which example will NOT have a term with p^2 after the expression has
D. $3p^2(p+2)$	Which example will NOT have a term with p^2 after the expression has been expanded? Try to do this by inspection.
ť	
e	e) Look at your answers to C and D. What is the same and what is different?
3) Look at examples A to D	in the box below:
A. $a(a^2+2)$ a) What is the same about each example?
B. $a(a^2 + 2a)$ k	b) What is the different about each example?
B. $a(a^2 + 2a)$ k C. $a(a^2 + 2b)$ c) Which examples will have a term with a^2 after the expression has been
D. $a(a^2 + 2ab)$	expanded? Try to do this by inspection.
) Will any example have a term with ab after the expression has been
	expanded? Try to do this by inspection.
e	e) Expand A to D.
4)	
4)	a nowars in your answers from smallest to largest
	e powers in your answers from smallest to largest
i) $3m(2+m)$ ii) $5m^2(2+m)$	
ii) $5r^2(2+r)$	csion has 2 variables a and b : $ab(a \pm 2b)$
	ssion has 2 variables, a and b: $ab(a + 3b)$
i) Expand the expr largest.	ression and write your answer so that the powers of a go from smallest to
ii) Now rewrite you	ar answers so that the powers of b go from largest to smallest.

Que	stions	Answers			
1)		1)			
1)	 a) Expand: i) 3(p) = ii) 3(p²) = iii) 3(2p) = iv) 3(2 + p) = b) In each example what operation is between the 3 and the brackets? c) Why do you get 2 terms in your answer to Q1a(iv)? 	1)	a) b) c)	i) $3p$ ii) $3p^2$ iii) $6p$ iv) $6+3p$ Multiplication Because 2 and p are unlike terms	
2)	Look at examples A to D in the box below:	2)			
	 A. p (p + 2) B. 3p (p + 2) C. 3p (p² + 2) D. 3p² (p + 2) a) Write down the monomial for each example. b) Write down the binomial for each example. c) Which example will NOT have a term with p² after the expression has been expanded? Try to do this by inspection. d) Expand A to D. e) Look at your answers to C and D. What is the same and what is different? 			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3)	Look at examples A to D in the box below:	3)			
	 A. a (a² + 2) B. a (a² + 2a) C. a (a² + 2b) D. a (a² + 2ab) a) What is the same about each example? b) What is the different about each example? c) Which examples will have a term with a² after the expression has been expanded? Try to do this by inspection. d) Will any example have a term with ab after the expression has been expanded? Try to do this by inspection. e) Expand A to D. 		a) b) c) d) e)	Monomial is always a ; the first term in the bracket is always a^2 ; all brackets involve addition and there is a 2 in the second term in each bracket. The second term in the bracket – constant, 1 letter, 2 letters B, C Yes, C A. $a^3 + 2a$ B. $a^3 + 2a^2$ C. $a^3 + 2ab$ D. $a^3 + 2a^2b$	
4)	 a) Expand and write the powers in your answers from smallest to largest i) 3m(2+m) ii) 5r²(2+r) 	4)	a) b)	i) $6m + 3m^2$ ii) $10r^2 + 5r^3$	
	 b) The following expression has 2 variables, a and b: ab(a + 3b) i) Expand the expression and write your answer so that the powers of a go from smallest to largest. ii) Now rewrite your answers so that the powers of b go from largest to smallest. 			i) $3ab^2 + a^2b$ ii) $a^2b + 3ab^2$	

In this worksheet you will focus on: a variable as part of a product, using the distributive law when monomials are positive and binomials have positive terms.

Que	estic	ons			
1)	a)	Fxn	and:		
	u,	•		ii)	$7(p^2) =$ iii) $7(3p) =$ iv) $7(3+p) =$
	b)				operation is between the 7 and the brackets?
	c)	Wh	y do you get t	wo t	erms in your answer to Q1a(iv)?
2)	Loc	ok at	examples A t	o D i	n the box below:
	A.	x	(x + 3)	a)	Write down the monomial for each example.
			x(x+3)	b)	Write down the binomial for each example.
			$x (x^2 + 3)$ $x^2 (x + 3)$	c)	Which example will NOT have a term with x^2 after the expression has been expanded?
	<u> </u>	1.	λ (λ 5)	d)	Expand A to D.
				e)	Look at your answers to C and D. What is the same and what is
					different?
3)	Loc	ok at	examples A to	o D ir	the box below:
	A.	а	$(a^2 + 5)$	a)	What is the same about each example?
	В.	а	$(a^2 + 5a)$	b)	What is the different about each example?
			$(a^2 + 5b)$	c)	Which examples will have a term with a^2 after the expression has been
	D.	а	$(a^2 + 5ab)$		expanded? Try to do this by inspection.
				d)	Will any example have a term with ab after the expression has been
					expanded? Try to do this by inspection.
				e)	Expand A to D.
4)					
	a)	-		the	powers in your answers from smallest to largest
		i)	6m(m+2)		
		ii)	$3r^2(2+r)$		
	b)	The	e following exp	oress	ion has 2 variables, a and b : $ab(a + 8b)$
		i)	Expand the e largest.	xpres	ssion and write your answer so that the powers of a go from smallest to
	ii) Now rewrite your answers so that the powers of b go from smallest to largest.				

Que	estior	IS	Answers		
1)	a) b) c)	Expand: ii) $7(p) =$ iii) $7(p^2) =$ iv) $7(3p) =$ v) $7(3 + p) =$ In each example what operation is between the 7 and the brackets? Why do you get two terms in your answer to Q1a(iv)?	1)	a) b) c)	i) $7p$ ii) $7p^2$ iii) $21p$ iv) $21 + 7p$ Multiplication in all 4 cases Because 3 and p are unlike terms
2)	А. В. С.	k at examples A to D in the box below: $x (x + 3)$ $4x (x + 3)$ $4x (x + 3)$ $4x (x^2 + 3)$ $4x^2 (x + 3)$ Write down the monomial for each example.Write down the binomial for each example.Which example will NOT have a term with x^2 after the expressionhas been expanded?Expand A to D.Look at your answers to C and D. What is the same and what isdifferent?	2)	a) b) c) d) e)	
3)	А. В.	k at examples A to D in the box below: $a (a^2 + 5)$ $a (a^2 + 5a)$ $a (a^2 + 5b)$ $a (a^2 + 5ab)$ What is the same about each example?What is the different about each example?Which examples will have a term with a^2 after the expression hasbeen expanded? Try to do this by inspection.Will any example have a term with ab after the expression has beenexpanded? Try to do this by inspection.Expand A to D.	3)	a) b) d) e)	Monomial is always a ; the first term in the bracket is always a^2 ; operation in bracket is addition; second term in bracket contains 5. The second term in the bracket, number of variables in the binomial B and D Yes, C A. $a^3 + 5a$ B. $a^3 + 5a^2$ C. $a^3 + 5ab$ D. $a^3 + 5a^2b$
4)	a) b)	 Expand and write the powers in your answers from smallest to largest 6m(m + 2) 3r²(2 + r) The following expression has 2 variables, a and b: ab(a + 8b) Expand the expression and write your answer so that the powers of a go from smallest to largest. Now rewrite your answers so that the powers of b go from smallest to largest. 	4)	a) b)	i) $12m + 6m^2$ ii) $6r^2 + 3r^3$ i) $8ab^2 + a^2b$ ii) $a^2b + 8ab^2$

This worksheet focuses on using the distributive law working left to right as well as right to left, binomials include positive and negatives.

Qu	estions
1)	Multiply out: a) $5(m+2) =$
	b) $2(m-2) =$
	c) $5m(m-2) =$
2)	Insert the missing values (□) to make the following statements true:
	a) $2(x - \Box) = 2x - 10$
	b) $2x(\Box - 5) = 2x^2 - 10x$ c) $2x^2(\Box - 5) = 2x^3 - \Box$
	c) $2x^{-}(\Box - 5) = 2x^{-} - \Box$
3)	Say whether each statement is TRUE or FALSE. If the statement is false, change the <i>right</i> side of the is equal sign to make the statement true. a) $3(p + 2) = 3p + 6$ b) $2(m + 1) = 2m + 1$ c) $-5(a + 2) = -5a + 10$ d) $6(2x + 7) = 12x + 13$
4)	Fix the part on the right of the is equal to sign to show the correct way to use the distributive law
	a) $9(m+2) = 9(2m)$
	b) $49 - 14d = 7(7 - 2)$
5)	Column A contains examples of monomials multiplied by binomials. Column B contains expanded
	versions.
	 a) Match the columns. b) Some examples don't have a partner. You will need to produce the matching partner.
	b) Some examples don't have a partner. You will need to produce the matching partner.
	Column A Column B
	1. $4(x-2)$ A $2x^2 - 8x$
	2. $2(x-4)$ B $4x-8$
	3. $x(2-4x)$ C $4x-2$
	4. $2x(x-4)$ D $8x-2x^2$
	5. $2x(4-x)$ E $2x-8$

Que	estions		Answe	rs
1)	Multiply out: a) $5(m + 2) =$ b) $2(m - 2) =$ c) $5m(m - 2) =$	c)	5m + 10 2m - 4 $5m^2 - 10m$	
2)	Insert the missing values (\Box) to make a) $2(x - \Box) = 2x - 10$ b) $2x(\Box - 5) = 2x^2 - 10x$ c) $2x^2(\Box - 5) = 2x^3 - \Box$	the following statements true:	2) a) b) c)	x
3)	Say whether each statement is TRUE <i>right</i> side of the is equal sign to make a) $3(p+2) = 3p+6$ b) $2(m+1) = 2m+1$ c) $-5(a+2) = -5a+10$ d) $6(2x+7) = 12x+13$	3) a) b) c) d)	False, $2m+2$ False, $-5a-10$	
4)	Fix the part on the right of the is equal distributive law a) $9(m + 2) = 9(2m)$ b) $49 - 14d = 7(7 - 2)$,	9m + 18 7(7 - 2d)	
5)	contains expanded versions. a) Match the columns.	mials multiplied by binomials. Column B ther. You will need to produce the matching	5) a) b)	1. B 2. E 3. No match 4. A 5. D

This worksheet focuses on using the distributive law working left to right as well as right to left, binomials include positives and negatives.

Qu	stions				
1)	Multiply out: a) $5(p-3) =$ b) $2(-p+3) =$ c) $5p(p-3) =$				
2)	Insert the missing values (\Box) to make the following statements true: a) $3(a - \Box) = 3a - 12$ b) $3a(\Box - 5) = 3a^2 - 15a$ c) $3a(\Box - \Box) = 10a^2 - 18a$				
3) 4)	equal sign to make the statement true. a) $5(a + 7) = 5a + 12$ b) $2(m - 1) = 2m - 1$ c) $7(1 - 3b) = 7 - 3b$ d) $4(y - 3x) = -12x + 4y$				
5)	b) $12x - 4 = 4(3x - 0)$				
	Column AColumn B1. $3p^2 - 6p$ A $3(p-1)$ 2. $2p - 10$ B $2p(3-p)$ 3. $3p - 3$ C $3p(2-p)$ 4. $6p - 2p^2$ D $3p(p-2)$ 5. $3p + 9$ E $3(p + 3)$				

Ar	iswers	
Qu	estions	Answers
1)	Multiply out: a) $5(p-3) =$ b) $2(-p+3) =$ c) $5p(p-3) =$	1) a) $5p - 15$ b) $-2p + 6$ c) $5p^2 - 15p$
2)	Insert the missing values (\Box) to make the following statements true: a) $3(a - \Box) = 3a - 12$ b) $3a(\Box - 5) = 3a^2 - 15a$ c) $3a(\Box - \Box) = 10a^2 - 18a$	2) a) 4 b) a c) $\frac{10}{3}a; 6$
3)	Say whether each statement is TRUE or FALSE. If the statement is false, change the <i>right</i> side of the equal sign to make the statement true. a) $5(a + 7) = 5a + 12$ b) $2(m - 1) = 2m - 1$ c) $7(1 - 3b) = 7 - 3b$ d) $4(y - 3x) = -12x + 4y$	3) a) False, $5a + 35$ b) False, $2m - 2$ c) False, $7 - 21b$ d) True
4)	Fix the part on the right of the equal sign to show the correct use of the distributive law: a) $6b + 10e = 3(2b + 3e)$ b) $12x - 4 = 4(3x - 0)$	4) a) $2(3b + 5e)$ b) $4(3x - 1)$
5)	Column A contains expressions. Column B contains monomials multiplied by binomials.a) Match the columns.b) Some examples don't have a partner. You will need to produce the matching partner. $\boxed{\begin{array}{c} Column A \\ \hline 1. & 3p^2 - 6p \\ \hline 2. & 2p - 10 \\ \hline 3. & 3p - 3 \\ \hline 4. & 6p - 2p^2 \\ \hline 5. & 3p + 9 \end{array}}$ $\boxed{\begin{array}{c} Column B \\ \hline A & 3(p - 1) \\ \hline B & 2p(3 - p) \\ \hline C & 3p(2 - p) \\ \hline D & 3p(p - 2) \\ \hline E & 3(p + 3) \end{array}}$	5) a) 1. D 2. No Match 3. A 4. B 5. E b) Partner for 2: $2p - 10 = 2(p - 5)$ Partner for C: $3p(2 - p) = 6p - 3p^2$

In this worksheet you will focus on: using the distributive law when monomials are positive and binomials contain negative numbers.

Qu	estions	
1)	 a) Expand: 3(p - 2) b) Expand: 3(2 - p) c) Write down 3 things that are the same in Q1a and Q1b. d) Write down 2 things that are different in Q1a and Q1b. e) If p = 5, will you get the same answer for Q1a and Q1b? 	 Conventions for writing answers involving expressions: 1) Use alphabetical order for terms e.g. The expression 5 + 3b + a should be written as: a + 3b + 5 Write the variables in alphabetical order Write constants last 2) If there is more than one variable: e.g. 9c + 5ac - 2a - 3 is written as 5ac - 2a + 9c - 3 Write the term with more than one variable first e.g. 2b × 4ab × b is written as 8ab³ Write coefficient first Write variables in alphabetical order 3) Write answers in descending powers of the variable (from largest to smallest) OR in ascending powers (from smallest to largest) e.g. 5de³ + 7d²e² has been written in descending powers of e and in ascending powers of d.
2)	A. $m(2-m)$ b)Choose anB. $m(-m+2)$ get the sac)Multiply control	m=1 in A and B. Do you get the same answer? Nother value for m and substitute in A and B. Do you time answer?
3)	In this question we are going to compare 5 a) Multiply out: i) $5(4 - x)$ ii) $5(x - 4)$ b) What is the same about the expanded c) If $x = 2$, will you get the same answer	expressions for Q3a(i) and Q3a(ii) and what is different?
4)	B. $3t(2-t)$ b) Which example C. $(2-t)3t$ c) Expand A,	e $t = 5$ in A, B and C. amples give the same answer? Why does this happen? , B and C. Write your answers in ascending powers of t . e expanded expressions the same? Explain.
5)	Expand. Write your answers in ascending p	

Que	stior	15	Answers		
1)			1)		
-,	a)	Expand: $3(p-2)$		(-2) = 3p	- 6
	a) b)	Expand: $3(p - 2)$ Expand: $3(2 - p)$	a) 3(p b) 3(2 -		
					al is multiplied by a binomial; the monomial is 3 ;
	c)	Write down 3 things that are the	C) Same		
		same in Q1a and Q1b.			ponent of p in the answers is 1
	d)	Write down 2 things that are			inomial in Q1a is variable p subtract constant 2
		different in Q1a and Q1b.			1b the binomial is constant 2 subtract variable p
	e)	If $p = 5$, will you get the same			answers of Q1a and Q1b are different
		answer for Q1a and Q1b?			p-6, and for Q1b is $6-3p$)
			e) No. If	p = 5 in C	Q1a, the answer is 9. If $p = 5$ in Q1b, the answer is -9 .
2)	Loo	k at examples A and B in the box belov	/:	2)	
				a)	A:If $m = 1$, then $1(2 - 1) = 1$, and
	Α.				B: if $m = 1$, then $1(-1+2) = 1$. Same answer.
	В.	m(-m+2)		b)	Own choice:
					A: If $m = 2$, then $2(2 - 2) = 0$, and
	a)	Substitute $m = 1$ in A and B. Do you	get the same		B: If $m = 2$, then $2(-2 + 2) = 0$.
	b)	answer?		c)	Same answer.
	b)	Choose another value for <i>m</i> and subs B. Do you get the same answer?	titute in A and	C)	A. $m(2-m) = 2m - m^2$
	c)	Multiply out A and B.			B. $m(-m+2) = -m^2 + 2m$
	d)	Are the multiplied out expressions th	e same?	d)	Yes. The monomials are the same. The binomials are
	α,	Explain.	e sume.	,	the same, i.e. $2 - m = -m + 2$
3)	In th	nis question we are going to compare !	5(4-x) and	3)	
	5(<i>x</i>	- 4).		a)	
	a)	Multiply out:			i) $5(4-x) = 20 - 5x$
		i) $5(4-x)$			ii) $5(x-4) = 5x - 20$
		ii) $5(x-4)$		b)	Same: They are the product of a monomial and a
	b)	What is the same about the expande	d expressions		binomial. The monomial is 5 in both cases.
	- /	for Q3a(i) and Q3a(ii) and what is diff			Different: The binomial in Q3a(i) is $4 - x$ and the
	c)	If $x = 2$, will you get the same answe			binomial in Q3a($x - 4x$
	•,	expressions?		c)	No. If $x = 2$, answer to (i) is 10; answer to (ii) is -10 .
4)	100	k at examples A to C in the box below:		4)	10.11×10^{-10}
7)	LUU	k at examples A to e in the box below.		-, a)	A: $3(5)(5-2) = 15(3) = 45$
	Α.	3t(t-2)		u)	B: 3(5)(2-5) = 15(-3) = -45
	В.	3t(2-t)			
	Б. С.	(2-t)3t			C: $(2-5)3(5) = (-3)15 = -45$
	C.	(2 1)51		b)	Examples B and C. The monomials are both 15. The
	a)	Substitute $t = 5$ in A, B and C.			binomials are both -3 . Multiplication is commutative:
	a) b)		vr2 W/by door		15(-3) = (-3)15
	IJ	Which examples give the same answe	and willy uses	c)	A: $3t(t-2) = 3t^2 - 6t = -6t + 3t^2$
		this happen?			B: $3t(2-t) = 6t - 3t^2$
	d)	Expand A, B and C. Write your answe	rs in ascending		C: $(2-t)3t = 6t - 3t^2$
		powers of <i>t</i> .		d)	No. Only B and C are the same: multiplication is
	c)	Are all the expanded expressions the	same? Explain.	~/	commutative and the monomials and binomials are
					the same. In A the terms in the binomial are swopped
					around and subtraction is not commutative i.e.
					$(t-2) \neq (2-t).$
5)	Expa	and. Write your answers in ascending	powers of d .	5)	
	a)	$de(e^2-2d)$		a)	
		$de(-2d+e^2)$		b)	$de(-2d + e^2) = de^3 - 2d^2e$
	c)	$de(-2d-e^2)$		c)	$de(-2d - e^2) = -de^3 - 2d^2e$
	d)	$de(-e^2-2d)$		d)	$de(-e^2 - 2d) = -de^3 - 2d^2e$

In this worksheet you will focus on: using the distributive law when monomials are positive and binomials contain negative numbers.

Qu	estions
1)	
,	a) Expand: $2(p-3)$
	b) Expand: $2(3-p)$
	c) Write down 3 things that are the same in Q1a and Q1b.
	d) Write down 2 things that are different in Q1a and Q1b.
	e) If $p = 5$, will you get the same answer for Q1a and Q1b?
2)	In this question we are going to compare $4(x - 5)$ and $4(5 - x)$
	a) Expand:
	i) $4(x-5)$
	ii) $4(5-x)$
	b) What is the same about the expanded expressions for Q2a(i) and Q2a(ii) and what is different?
	c) If $x = 2$, will you get the same answer for the two expressions?
3)	Look at examples A to C in the box below:
	A. $3y(2-y)$
	B. $3y(y-2)$
	C. $(2-y)(3y)$
	a) Substitute $y = 3$ in A, B and C.
	b) Which examples give the same answer? Why does this happen?
	c) Expand A, B and C. Write your answers in descending powers of y.
	d) Are all the expanded expressions the same? Explain.
4)	Expand. Write your answers in descending powers of <i>b</i> .
	a) $ab(b^2 - 2a)$
	b) $ab(-2a+b^2)$
	c) $ab(-2a - b^2)$
	d) $(-b^2 - 2a)(ab)$

Questions	Answers		
 1) a) Expand: 2(p - 3) b) Expand: 2(3 - p) c) Write down 3 things that are the same in Q1a and Q1b. d) Write down 2 things that are different in Q1a and Q1b. e) If p = 5, will you get the same answer for Q1a and Q1b? 	 1) a) 2(p-3) = 2p - 6 b) 2(3-p) = 6 - 2p c) Same: The monomial is multiplied by a binomial The monomial is 2 in Q1a and Q1b The exponent of p in the bracket and in the answers of Q1a and Q1b is 1 d) Different: The binomial in Q1a is variable p subtract constant 3 (i.e. p - 3), whilst the binomial in Q1b is constant 3 subtract variable p (i.e. 3 - p) The answers of Q1a and Q1b are different (i.e. for Q1a is 2p - 6, and for Q1b is 6 - 2p) e) No. When p = 5 Q1a, the answer is 4. 		
 2) In this question we are going to compare 4(x - 5) and 4(5 - x): a) Expand: i) 4(x - 5) ii) 4(5 - x) b) What is the same about the expanded expressions for Q2a(i) and Q2a(ii) and what is different? c) If x = 2, will you get the same answer for the two expressions? 	When $p = 5$ in Q1b, the answer is -4 . 2) a) i) $4(x-5) = 4x - 20$ ii) $4(5-x) = 20 - 4x$ b) They are both the product of a monomial and a binomial. The binomial in (i) is $x - 5$ and the binomial in (ii) is $5 - x$ so the signs are different. c) No. If $x = 2$, $4(2) - 20 = -12$ and 20 - 4(2) = 12		
 3) Look at examples A to C in the box below: A. 3y(2 - y) B. 3y(y - 2) C. (2 - y)(3y) a) Substitute y = 3 in A, B and C. b) Which examples give the same answer? Why does this happen? c) Expand A, B and C. Write your answers in descending powers of y. d) Are all the expanded expressions the same? Explain. 	3) a) If $y = 3$ in A, then $3(3)(2 - 3) = 9(-1) = -9$ If $y = 3$ in B, then $3(3)(3 - 2) = 9(1) = 9$ If $y = 3$ in C, then $(2 - 3)3(3) = -1(9) = -9$ b) Examples A and C. The monomials are the same and the binomials are the same. c) A. $3y(2 - y) = 6y - 3y^2 = -3y^2 + 6y$; B. $3y(y - 2) = 3y^2 - 6y$; C. $(2 - y)3y = 6y - 3y^2 = -3y^2 + 6y$ d) No. Only A and C of the expanded expressions are the same because multiplication is commutative and the monomials and binomials are the same. In B the terms in the binomial are swopped around and subtraction is not commutative i.e. $(2 - y) \neq (y - 2)$.		
4) Expand. Write your answers in descending powers of <i>b</i> . a) $ab(b^2 - 2a)$ b) $ab(-2a + b^2)$ c) $ab(-2a - b^2)$ d) $(-b^2 - 2a)(ab)$	4) a) $ab(b^2 - 2a) = ab^3 - a^2b$ b) $ab(-2a + b^2) = ab^3 - 2a^2b$ c) $ab(-2a - b^2) = -ab^3 - 2a^2b$ d) $(-b^2 - 2a)(ab) = -ab^3 - 2a^2b$		

In this worksheet you will focus on: using the distributive law when monomials are positive or negative and binomials contain negative and positive numbers.

Qu	estions
1)	Look at examples A and B in the box below: A. $3(p+2)$ B. $-3(p+2)$
	 a) Write down the monomials in A and B. b) Write down the binomials in A and B. c) When you multiply out each expression, what will be the sign of the constant term? d) Multiply out A and B.
2)	Look at example A and B in the box below: A. $k(5-k)$ B. $-k(5-k)$
	 a) Substitute k = 3 in A and B. Do you get the same answer? b) Choose a negative value for k and substitute in A and B. Do you get the same answer? c) Multiply out A and B. d) Are the multiplied out expressions the same? Explain.
3)	Look at examples A to C in the box below: A. $-3b(b+6)$ B. $-3b(6+b)$ C. $(6+b)(-3b)$
	 a) Substitute b = 4 in A, B and C. b) Which examples give the same answer? Why does this happen? c) Expand A, B and C. Write your answers in descending powers of b. d) Are the expanded expressions the same? Explain.
4)	Simplify. Write your answers in descending powers of e. a) $-de(e^2 - 2d)$ b) $-de(2d - e^2)$ c) $-de(-2d + e^2)$ d) $-de(-2d - e^2)$ e) $(e^2 - 2d)(-de)$ f) $(-e^2 + 2d)(-de)$

Answers Questions			Answers				
•							
1)	 Look at examples A and B in the box below: A. 3(p + 2) B3(p + 2) a) Write down the monomials in A and B. b) Write down the binomials in A and B. c) When you multiply out each expression, what will be the sign of the constant term? 	1)	A B c) d)	3	$\frac{p+2}{p+2}$		
	d) Multiply out A and B.		u)	B: -3(p+2) = -3p - 6	6		
2)	 Look at example A and B in the box below: A. k(5-k) Bk(5-k) Bk(5-k) a) Substitute k = 3 in A and B. Do you get the same answer? b) Choose a negative value for k and substitute in A and B. Do you get the same answer? c) Multiply out A and B. d) Are the multiplied out expressions the same? Explain. 	2)	a) b) c) d)	If $k = 3$, then $3(5 - 3) = -3(5 - 3) = -6$. Not the Own choice. If $k = -2$, then $(-2)(5 - (-2)(5 - (-2)) = 14$ A. $k(5 - k) = 5k - k$ B. $-k(5 - k) = -5k$ No, the monomials are do and one is negative.	the same answer. -(-2)) = -14, and 4. Not the same answer. 2^{2} $+k^{2}$		
3)	 Look at examples A to C in the box below: A3b(b + 6) B3b(6 + b) C. (6 + b)(-3b) a) Substitute b = 4 in A, B and C. b) Which examples give the same answer? Why does this happen? c) Expand A, B and C. Write your answers in descending powers of b. d) Are the expanded expressions the same? Explain. 	3)	a) b) c)	• • • •	(6 + 4) = -120 (4)(-3(4)) = -120 is same answer. The and the binomials er due to the (b + 6) = (6 + b) - 18b - 18b (2 - 18b)		
4)	Simplify. Write your answers in descending powers of e. a) $-de(e^2 - 2d)$ b) $-de(2d - e^2)$ c) $-de(-2d + e^2)$ d) $-de(-2d - e^2)$ e) $(e^2 - 2d)(-de)$ f) $(-e^2 + 2d)(-de)$	4)	a) b) c) d)	$-de^{3} + 2d^{2}e$ $de^{3} - 2d^{2}e$ $-de^{3} + 2d^{2}e$ $de^{3} + 2d^{2}e$ $-de^{3} + 2d^{2}e$ $de^{3} - 2d^{2}e$			

In this worksheet you will focus on: using the distributive law when monomials are positive or negative and binomials contain negative and positive numbers.

Qu	estions
1)	Look at examples A and B in the box below: A. $7(v + 2)$ B. $-7(v + 2)$
	 a) Write down the monomials in A and B. b) Write down the binomials in A and B. c) When you multiply out each expression, what will be the sign of the constant term? d) Multiply out A and B.
2)	Look at example A and B in the box below: A. $a(6-a)$ B. $-a(6-a)$
	 a) Substitute a = 5 in A and B. Do you get the same answers? b) Choose a negative value for a and substitute in A and B. Do you get the same answers? c) Multiply out A and B. d) Are the expanded expressions the same? Explain.
3)	Look at examples A to C in the box below: A. $-2b(b+9)$ B. $-2b(9+b)$ C. $(9+b)(-2b)$
	 a) Substitute b = 2 in A, B and C. b) Which examples give the same answer? Why does this happen? c) Expand A, B and C. Write your answers in descending powers of b. d) Are the expanded expressions the same? Explain.
4)	Multiply out. Write your answers in descending powers of a . a) $ad(a^2 - 2b)$ b) $-ad(2d - a^2)$ c) $(-ad)(-2d + a^2)$ d) $-da(-2d - a^2)$ e) $(a^2 - 2d)(-ad)$ f) $(-a^2 + 2d)(-da)$

An	iswers			
Que	estions	Answ	ers	
1)	 Look at examples A and B in the box below: A. 7(v + 2) B7(v + 2) a) Write down the monomials in A and B. b) Write down the binomials in A and B. c) When you multiply out each expression, what will be the sign of the constant term? d) Multiply out A and B. 		A B :)	a) Monomials b) Binomials 7 v + 2 $-7 v + 2$ The constant will be positive in A and negative in B 7(v + 2) = 7v + 14 $-7(v + 2) = -7v - 14$
2)	 Look at example A and B in the box below: A. a(6-a) Ba(6-a) a) Substitute a = 5 in A and B. Do you get the same answers? b) Choose a negative value for a and substitute in A and B. Do you get the same answers? c) Multiply out A and B. d) Are the multiplied out expressions the same? Explain. 	c		If $a = 5$, then $5(6 - 5) = 5$, and then -5(6 - 5) = -5. Not the same answer. Own choice. If $a = -2$, then $(-2)(6 - (-2)) = -16$, and $-(-2)(6 - (-2)) = 16$. Not the same answer. A. $a(6 - a) = 6a - a^2$ B. $-a(6 - a) = -6a + a^2$ No, the monomials are different, one is positive, and one is negative.
3)	 Look at examples A to C in the box below: A2b(b + 9) B2b(9 + b) C. (9 + b)(-2b) a) Substitute b = 2 in A, B and C. b) Which examples give the same answer? Why does this happen? c) Expand A, B and C. Write your answers in descending powers of b. d) Are the expanded expressions the same? Explain. 	t	3) 5) 5)	If $b = 2$, A gives $-2(2)(2) + 9) = -44$ B gives $-2(2)(9 + (2)) = -44$ C gives $(9 + (2))(-2(2)) = -44$ All the examples give the same answer. The monomial is the same and the binomials produce the same answer due to the commutative property: $(b + 9) = (9 + b)$ A: $-2b(b + 9) = -2b^2 - 18b$ B: $-2b(9 + b) = -2b^2 - 18b$ C: $(9 + b)(-2b) = -2b^2 - 18b$ Yes. See explanation in Q3b.
4)	Multiply out. Write your answers in descending powers of a . a) $ad(a^2 - 2b)$ b) $-ad(2d - a^2)$ c) $(-ad)(-2d + a^2)$ d) $-da(-2d - a^2)$ e) $(a^2 - 2d)(-ad)$ f) $(-a^2 + 2d)(-da)$	t c c) ;) ;) ;)	$a^{3}d - 2ad^{2}$ $a^{3}d - 2ad^{2}$ $-a^{3}d + 2ad^{2}$ $a^{3}d + 2ad^{2}$ $-a^{3}d + 2ad^{2}$ $a^{3}d - 2ad^{2}$

In this worksheet you will focus on: using the distributive law when there are 2 or more terms in the brackets, monomials are positive or negative and terms in the brackets contain positive and/or negative and numbers.

Qu	estions
1)	Look at examples A, B and C in the box below:
	A. $2(m+n)$
	B. $2(m+3n)$
	C. $2(m-3n)$
	a) How many terms are in each bracket?
	b) Predict how many terms there will be in the final answer for each example.
	c) Expand A to C. Is your answer in Q1b correct?
2)	Look at examples A, B and C in the box below:
	A. $2(m+3n+4p)$
	B. $2(m-3n+4p)$
	C. $2(m+3n-4p)$
	a) How many terms are in each bracket?
	b) Predict how many terms there will be in the final answer for each example.
	c) Expand A to D. Is your answer in Q2b correct?
2)	F
3)	•
	a) $-2(f + g + h)$ f) $(f + g + h)(-e)$
	b) $(f + g + h)(-2)$ c) $e(f + g + h)$ b) $(f - g - h)(-e)$
	d) $(f + g + h)e$ i) $-4e(f + g + h)$
	e) $-e(f+g+h)$ j) $(f+g+h)(-4e)$
4)	Multiply out:
	a) $t(t^2 + t + 3)$
	b) $(t^2 + t + 3)t$
	c) $-t(t^2 + t + 3)$
	d) $(t^2 + t + 3)(-t)$
- \	
5)	Multiply out. Write your answers in descending powers of <i>s</i> for Q5a to Q5c, and in descending
	powers of p for Q5d to Q5f.
	a) $(s-5)3st$
	b) $(s-5)(-3st)$ c) $(s^2+2t+3)(-3st)$
	d) $-pr(p^2 + 2p)$
	e) $-pr(p^2 - 2p)$
	e) $-pr(p^2 - 2p)$ f) $-pr(-p^2 - 2p + 5)$
	-p(-p - 2p + 5)

Ar	Answers				
Qu	estions	Answers			
1)	Look at examples A, B and C in the box below:	1)			
	A. $2(m+n)$	a) 2			
	B. $2(m+3n)$	b) 2			
	C. $2(m-3n)$	c) A. $2m + 2n$			
		B. $2m + 6n$			
	a) How many terms are in each bracket?	C. $2m - 6n$			
	b) Predict how many terms there will be in the final answer for				
	each example.	Yes it is correct			
	c) Expand A to C. Is your answer in Q1b correct?				
2)	Look at examples A, B and C in the box below:	2)			
	A. $2(m+3n+4p)$	a) 3			
	B. $2(m-3n+4p)$	b) 3			
	C. $2(m+3n-4p)$	c) A: $2m + 6n + 8p$			
		B: $2m - 6n + 8p$			
	a) How many terms are in each bracket?	C: $2m + 6n - 8p$			
	b) Predict how many terms there will be in the final answer for				
	each example.	Yes it is correct			
	c) Expand A to D. Is your answer in Q2b correct?				
3)	Expand:	3)			
	a) $-2(f + g + h)$	a) $-2f - 2g - 2h$			
	b) $(f + g + h)(-2)$	b) $-2f - 2g - 2h$			
	c) $e(f + g + h)$	c) $ef + eg + eh$			
	d) $(f+g+h)e$	d) $ef + eg + eh$			
	e) $-e(f+g+h)$	e) $-ef - eg - eh$			
	f) $(f + g + h)(-e)$	f) $-ef - eg - eh$			
	g) $-e(f-g+h)$	g) $-ef + eg - eh$			
	h) $(f - g - h)(-e)$	h) $-ef + eg + eh$			
	i) $-4e(f+g+h)$	i) $-4ef - 4eg - 4eh$			
	j) $(f + g + h)(-4e)$	j) $-4ef - 4eg - 4eh$			
4)	Multiply out:	4)			
	a) $t(t^2 + t + 3)$	a) $t^3 + t^2 + 3t$			
	b) $(t^2 + t + 3)t$	b) $t^3 + t^2 + 3t$			
	c) $-t(t^2 + t + 3)$	c) $-t^3 - t^2 - 3t$			
	d) $(t^2 + t + 3)(-t)$	d) $-t^3 - t^2 - 3t$			
		+			
5)	Multiply out. Write your answers in descending powers of <i>s</i> for	5)			
	Q5a to Q5c, and in descending powers of p for Q5d to Q5f.				
	a) $(s - 5)3st$ b) $(s - 5)(-2st)$	a) $3s^2t - 15st$			
	b) $(s-5)(-3st)$ c) $(s^2+2t+3)(-3st)$	b) $-3s^2t + 15st$			
		c) $-3s^3t - 6st^2 - 9st$			
	d) $-pr(p^2 + 2p)$	d) $-p^3r - 2p^2r$			
	e) $-pr(p^2 - 2p)$	e) $-p^3r + 2p^2r$			
	f) $-pr(-p^2 - 2p + 5)$	f) $p^3r + 2p^2r - 5pr$			

In this worksheet you will focus on: using the distributive law when there are 2 or more terms in the brackets, monomials are positive or negative and terms in the brackets contain positive and/or negative and numbers.

Qu	estions
1)	Look at examples A, B, C and D in the box below: A. $3(d + 2e + 4f)$ B. $3(d - 2e + 4f)$ C. $3(d + 2e - 4f)$ D. $3(d - 2e - 4f)$
	a) How many terms are in each bracket?b) Predict how many terms there will be in the final answer for each example.c) Expand A to D. Is your answer in Q1b correct?
2)	Multiply out: a) $w(x + y + z)$ b) $(x + y + z)w$ c) $x(x + y + z)$ d) $-x(x + y + z)$ e) $-x(x - y + z)$ f) $-4x(x - y - z)$
3)	Multiply out: a) $3a(a^2 + a + 5)$ b) $2a(a^2 - a + 5)$ c) $-a(a^2 - a + 5)$ d) $(a^2 - a + 5)(-a)$
4)	Multiply out. Write your answers in descending powers of x for Q4a to Q4c, and in descending powers of c for Q4d to Q4f. a) $(x - 7)3xy$ b) $(x - 7)(-3xy)$ c) $(x^2 - 7x + 3)(-3xy)$ d) $-cd(c^2 - 2c)$ e) $-cd(-c^2 - 2c)$ f) $-cd(-c^2 - 2c + 7)$

Ar	Answers							
Qu	Questions			Answers				
1)	Look at examples A, B, C and D in the box below: A. $3(d + 2e + 4f)$ B. $3(d - 2e + 4f)$ C. $3(d + 2e - 4f)$ D. $3(d - 2e - 4f)$ a) How many terms are in each bracket?	1)	a) b) c)	3 3 A. $3d + 6e + 12f$ B. $3d - 6e + 12f$ C. $3d + 6e - 12f$ C. $3d + 6e - 12f$				
	b) Predict how many terms there will be in the final answer for each example.c) Expand A to D. Is your answer in Q1b correct?			D. $3d - 6e - 12f$ Yes it is correct				
2)	Multiply out: a) $w(x + y + z)$ b) $(x + y + z)w$ c) $x(x + y + z)$ d) $-x(x + y + z)$ e) $-x(x - y + z)$ f) $-4x(x - y - z)$	2)	b) c) d) e)	wx + wy + wz xw + yw + zw $x^{2} + xy + xz$ $-x^{2} - xy - xz$ $-x^{2} + xy - xz$ $-4x^{2} + 4xy + 4xz$				
3)	Multiply out: a) $3a(a^2 + a + 5)$ b) $2a(a^2 - a + 5)$ c) $-a(a^2 - a + 5)$ d) $(a^2 - a + 5)(-a)$	3)	b) c)	$3a^{3} + 3a^{2} + 15a$ $2a^{3} - 2a^{2} + 10a$ $-a^{3} + a^{2} - 5a$ $-a^{3} + a^{2} - 5a$				
4)	Multiply out. Write your answers in descending powers of x for Q4a to Q4c, and in descending powers of c for Q4d to Q4f. a) $(x - 7)3xy$ b) $(x - 7)(-3xy)$ c) $(x^2 - 7x + 3)(-3xy)$ d) $-cd(c^2 - 2c)$ e) $-cd(-c^2 - 2c)$ f) $-cd(-c^2 - 2c + 7)$	4)	b) c) d) e)	$3x^{2}y - 21xy -3x^{2y} + 21xy -3x^{3}y + 21x^{2}y - 9xy -c^{3}d + 2c^{2}d c^{3}d + 2c^{2}d c^{3}d + 2c^{2}d - 7cd$				

This worksheet focuses on simplifying algebraic expressions, substituting into algebraic expressions and working with verbal and algebraic expressions.

Qu	esti	ons
1)	Sin	aplify:
	a)	a + a + a
	b)	$8b \times 3b$
	c)	$7a \times 4b$
	d)	(p)(q) - r
	e)	-3s(-4t)
2)	Cal	culate the value of:
	a)	3ab if $a = 3$ and $b = 4$
	b)	x + 10 if $x = -5$
	c)	3(2w+5) if $w = 2$
3)		
	a)	Write $h-9$ as a verbal expression
	b)	Write 'thirteen more than a number' as an algebraic expression
4)		culate the value of:
	a)	3ab if $a = 3$ and $b = 4$
	'	x + 10 if $x = -5$
	c)	3(2w+5) if $w = 2$
5)	Sin	iplify:
	a)	r - 7r + r
	b)	7b + 5b - 3a
	c)	5x + 6 + 2x + 5
	•	-15y - 6y
	e)	5d + 2e + 8 + 7d - e + 8
6)	Say	whether each statement is TRUE or FALSE:
	a)	8xy and $8yx$ are like terms
	b)	3(x+2y) = 3x+2y
	c)	32 + 16d = 8(4 + 2d)
	d)	10x - 36y + 2x + y = 12x + 36y

Questions			Answers			
1)	Simplify:	1)	1)			
	a) $a + a + a$		a)	3a		
	b) $8b \times 3b$		b)	$24b^2$		
	c) $7a \times 4b$		c)	28 <i>ab</i>		
	d) $(p)(q) - r$		d)	pq-r		
	e) $-3s(-4t)$		e)	12 <i>st</i>		
2)	Calculate the value of:	2)				
	a) $3ab$ if $a = 3$ and $b = 4$		a)	3(3)(4) = 36		
	b) $x + 10$ if $x = -5$		b)	(-5) + 10 = 5		
	c) $3(2w+5)$ if $w = 2$		c)	3(4+5) = 27		
3)		3)	Pos	sible answers:		
	a) Write $h - 9$ as a verbal expression		a)	Nine less than h or h subtract 9		
	b) Write 'thirteen more than a number' as an algebraic expression		b)	x + 13 or 13 + x		
4)	Simplify:	4)				
	a) $r - 7r + r$		a)	-5r		
	b) $7b + 5b - 3a$		b)	-3a + 12b		
	c) $5x + 6 + 2x + 5$		c)	7x + 11		
	d) $-15y - 6y$		d)	-21 <i>y</i>		
	e) $5d + 2e + 8 + 7d - e + 8$		e)	12d + e + 16		
5)	Say whether each statement is TRUE or FALSE:	5)				
	a) $8xy$ and $8yx$ are like terms		a)	True		
	b) $3(x+2y) = 3x + 2y$		b)	False		
	c) $32 + 16d = 8(4 + 2d)$		c)	True		
	d) $10x - 36y + 2x + y = 12x + 36y$		d)	False		

This worksheet focuses on simplifying algebraic expressions, substituting into algebraic expressions and working with verbal and algebraic expressions.

Qu	esti	ons
1)	Sim	nplify:
	a)	b + 2b
	b)	$\frac{8x}{4}$
		$^{4}-7a(4b)$
	-	(p)(q) - (p)(r)
	-	3m - 6m
	C)	
2)	Cal	culate the value of:
	a)	3a + b if $a = 3$ and $b = 4$
	b)	(x-5) + 5 if $x = -5$
	c)	3(6w + 4w) if $w = 2$
3)		
	a)	Write $4p + 3$ as a verbal expression
	b)	Write 'five less than a number' as an algebraic expression
4)	Sim	nplify:
	a)	a - 3a + a
	b)	6m + 3m - 2
	c)	8x - 3 + 4x + 3
	d)	-4j-4j
	e)	4xyz + xz + 2x - xyz - x - y
	f)	a - 3a
5)	Sav	whether each statement is TRUE or FALSE:
		6a - 3a - a - 12 = 3a - 12
	'	12(x + 2y + 2x) = 12(3x + 2y)
	-	6(d-e) = 6d - 6e
	,	4(2x - 3y) = -24xy

r							
Que	estions	Ans	swers	5			
1)	Simplify:	1)					
	a) $b+2b$		a)	3 <i>b</i>			
	b) $\frac{8x}{4}$		b)	2 <i>x</i>			
	c) $-7a(4b)$		c)	-28ab			
	d) $(p)(q) - (p)(r)$		d)	pq - pr			
	e) $3m - 6m$		e)	-3m			
2)	Calculate the value of:	2)					
,	a) $3a + b$ if $a = 3$ and $b = 4$,	a)	13			
	b) $(x-5) + 5$ if $x = -5$		•	-5			
	c) $3(6w + 4w)$ if $w = 2$		c)	60			
3)		3)	Pos	sible answers			
	a) Write $4p + 3$ as a verbal expression		a)	Three more than 4 multiplied by a number			
	b) Write 'five less than a number' as an algebraic expression		b)	x-5			
4)	Simplify:	4)					
	a) $a - 3a + a$		a)	- a			
	b) $6m + 3m - 2$		b)	9m - 2			
	c) $8x - 3 + 4x + 3$		c)	12 <i>x</i>			
	d) $-4j-4j$		d)	-8 <i>j</i>			
	e) $4xyz + xz + 2x - xyz - x - y$		e)	3xyz + xz + x - y			
5)	Say whether each statement is TRUE or FALSE:	5)					
	a) $6a - 3a - a - 12 = 3a - 12$		a)	False			
	b) $12(x + 2y + 2x) = 12(3x + 2y)$		b)	True			
	c) $6(d-e) = 6d - 6e$		c)	True			
	d) $4(2x - 3y) = -24xy$		d)	False			

In this worksheet you will focus on: adding, subtracting or multiplying algebraic expressions which have 2 terms in brackets.

	lestions						
1)							
	 a) Which of these terms produce the same answer when they are simplified? 25p; 2 × 5p; 2(5p); 2p(5) b) Apply the distributive law: 3a(a + 7) 						
	c) Spot the 2 errors and correct the	hem:					
	5 + m(2 + m)						
	=5m(2+m)						
	= 10m + 5m						
	= 15m						
2)	This question focuses on the 6 exp	ressions in the box.					
-,	A. $5k(k + 2)$						
	B. $(k + 2)5k$						
	C. $5 + k(k + 2)$						
	D. $(k + 2)5 + k$						
	, ,						
	E. $(k + 2) + 5k$						
	F. $5(k + 2)k$						
	ii) In which expressions is 5 mb) Simplify each expression.	nultiplied into the bracket? nultiplied into the bracket? me answer? Why does this happen?					
	ii) In which expressions is 5 mb) Simplify each expression.c) Which expressions have the sa	nultiplied into the bracket? me answer? Why does this happen?					
3)	ii) In which expressions is 5 mb) Simplify each expression.c) Which expressions have the sa	nultiplied into the bracket?					
3)	ii) In which expressions is 5 mb) Simplify each expression.c) Which expressions have the sa	nultiplied into the bracket? me answer? Why does this happen?					
3)	 ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses 2x; x 	nultiplied into the bracket? me answer? Why does this happen? and 3. We have grouped them into 3 clusters.					
3)	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; x A. $2x(x + 3)$	nultiplied into the bracket? me answer? Why does this happen? and 3. We have grouped them into 3 clusters. a) What is different between A, B and C?					
3)	 ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses 2x; x A. 2x(x + 3) B. 2x + (x + 3) 	 and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? 					
3)	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; $x =$ A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$	 and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? 					
3)	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; $x =$ A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x)3$	 and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. 					
3)	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; $x =$ A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x) + 3$ F. $(2x - 3) + x$	 and 3. We have grouped them into 3 clusters. and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. f) Try to do E in different way. 					
3)	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; $x =$ A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x)3$	 and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. 					
	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; $x =$ A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x) + 3$ F. $(2x - 3) + x$	 multiplied into the bracket? me answer? Why does this happen? and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. f) Try to do E in different way. g) In which expressions are the brackets <u>not</u> needed? 					
	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; $x =$ A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x) + 3$ F. $(2x - 3) + x$ G. $(2x - 3)x$	 multiplied into the bracket? me answer? Why does this happen? and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. f) Try to do E in different way. g) In which expressions are the brackets <u>not</u> needed? 					
	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; x A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x) + 3$ F. $(2x - 3) + x$ G. $(2x - 3)x$ Three expressions are given below	 multiplied into the bracket? me answer? Why does this happen? and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. f) Try to do E in different way. g) In which expressions are the brackets <u>not</u> needed? 					
3)	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; $x =$ A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x) + 3$ F. $(2x - 3) + x$ G. $(2x - 3)x$ Three expressions are given below A. $2x(x - y)$	 multiplied into the bracket? me answer? Why does this happen? and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. f) Try to do E in different way. g) In which expressions are the brackets <u>not</u> needed? 					
	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; $x =$ A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x) + 3$ E. $(2x - x) + 3$ F. $(2x - 3) + x$ G. $(2x - 3) + x$ G. $(2x - 3)x$ Three expressions are given below A. $2x(x - y)$ B. $x + 2x(x - y)$	 multiplied into the bracket? me answer? Why does this happen? and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. f) Try to do E in different way. g) In which expressions are the brackets <u>not</u> needed? 					
	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; $x =$ A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x) + 3$ E. $(2x - x) + 3$ F. $(2x - 3) + x$ G. $(2x - 3) + x$ G. $(2x - 3)x$ Three expressions are given below A. $2x(x - y)$ B. $x + 2x(x - y)$ C. $(x - y)2x + x$ a) Expand each expression.	<pre>multiplied into the bracket? me answer? Why does this happen? and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. f) Try to do E in different way. g) In which expressions are the brackets <u>not</u> needed? </pre>					
	ii) In which expressions is 5 m b) Simplify each expression. c) Which expressions have the sa Each expression below uses $2x$; $x =$ A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x) + 3$ E. $(2x - x) + 3$ F. $(2x - 3) + x$ G. $(2x - 3) + x$ G. $(2x - 3)x$ Three expressions are given below A. $2x(x - y)$ B. $x + 2x(x - y)$ C. $(x - y)2x + x$ a) Expand each expression.	 multiplied into the bracket? me answer? Why does this happen? and 3. We have grouped them into 3 clusters. a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. f) Try to do E in different way. g) In which expressions are the brackets <u>not</u> needed? 					

Questions	Answers
•	
 1) a) Which of these terms produce the same answer when they are simplified? 25p; 2×5p; 2(5p); 2p(5) b) Apply the distributive law: 3a(a + 7) c) Spot the 2 errors and correct them: 5 + m(2 + m) = 5m(2 + m) = 10m + 5m = 15m 	 1) a) These terms 2 × 5p; 2(5p); 2p(5) all produce 10. b) 3a² + 21a c) Line 2: 5 + m is written as 5 and in line 3 the product of 5m and m is given as 5m instead of 5m². This is what the answer should be: 5 + m(2 + m) = 5 + 2m + m²
2) This question focuses on the 6 expressions in the box.	2)
A. $5k(k + 2)$ B. $(k + 2)5k$ C. $5 + k(k + 2)$ D. $(k + 2)5 + k$ E. $(k + 2) + 5k$ F. $5(k + 2)k$ a) Look at the expressions carefully and answer these questions: i) In which expressions is k multiplied into the	a) i) A, B, C and F ii) A, B, D and F b) A. $5k^2 + 10k$ B. $5k^2 + 10k$ C. $5 + k^2 + 2k = k^2 + 2k + 5$ D. $6k + 10$ E. $6k + 2$
bracket?	F. $5k^2 + 10k$
ii) In which expressions is 5 multiplied into the bracket?b) Simplify each expression.c) Which expressions have the same answer? Why does this happen?	c) A, B and F: In A, monomial $5k$ is multiplied into binomial $k + 2$ from the left; in B, $5k$ is multiplied into $k + 2$ from the right; in C 5 of the monomial $5k$ is multiplied into $k + 2$ from the right and then the product is multiplied by the variable k of $5k$.
3) Each expression below uses $2x$; x and 3 . We have	3)
grouped them into 3 clusters. A. $2x(x + 3)$ B. $2x + (x + 3)$ C. $2x - (x + 3)$ D. $(2x - x) + 3$ E. $(2x - x)3$ F. $(2x - 3) + x$ G. $(2x - 3)x$ a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between E and G? e) Simplify A to G. f) Try to do E in different way. g) In which expressions are the brackets <u>not</u> needed?	a) In A, monomial 2x is multiplied into binomial $x + 3$ from the left. In B, binomial $x + 3$ is added to monomial 2x In C, binomial $x + 3$ is subtracted from monomial 2 b) In D, 3 is added to $2x - x$, in E, $2x - x$ is multiplied by 3 from the right c) In F, x is added to $2x - 3$, In G, $2x - 3$ is multiplied by x from the right d) Same: E and G have the a binomial multiplied by monomial; $2x$ is the first term in the binomial; there is subtraction in both brackets Different: Binomial in E consists of like terms, but binomial in G consists of unlike terms. e) A. $2x^2 + 6x$ B. $3x + 3$ C. $x - 3$ D. $x + 3$ E. $3x$ F. $3x - 3$ G. $2x^2 - 3x$ f) $6x - 3x = 3x$ or $(x)3 = 3x$ g) B, D and F
5) Three expressions are given below:	4)
A. $2x(x - y)$ B. $x + 2x(x - y)$ C. $(x - y)2x + x$	a) A. $2x^2 - 2xy$ B. $x + 2x^2 - 2xy = 2x^2 - 2xy + x$
 a) Expand each expression. b) For B, a classmate's answer is: 3x² - 3xy. What did she do wrong? 	 C. 2x² - 2xy + x b) She added x and 2x first then applied the distributive law. She should have distributed 2x first.

In this worksheet you will focus on: adding, subtracting or multiplying in algebraic expressions which have 2 terms in brackets.

Questio	ns
b) c)	Which of the following terms produce the same answer when simplified? $3 \times 5x; 3(5x); 5x(3); 3 + 5x$ Apply the distributive law: $2a(a + 7)$ Spot the 2 errors and work out the correct solution: 3 + 2m(m + 2) = 5m(m + 2) $= 5m^2 + 10$
A. B. C. E. F. a)	question focuses on the 6 expressions in the box. 5k(k-2) $(k-2)5k$ $5+k(k-2)$ $(k-2)5+k$ $(k-2)+5k$ $5(k-2)k$ Look at the expressions carefully and answer these questions: i) In which expressions is k multiplied into the bracket? ii) In which expressions is 5 multiplied into the bracket? Simplify each expression. Which expressions have the same answer? Why does this happen?
А. В.	(2a-3) + a f) Try to do E in different way.
a) b) c)	and the following expressions: 2x(x - y) x + 2x(x - y) (x - y)2x + x 2x(x - y) + y

Questions	A	nswers	;
 1) a) Which of the following terms produce the answer when simplified? 3 × 5x; 3(5x); 5x(3); 3 + 5x b) Apply the distributive law: 2a(a + 7) c) Spot the 2 errors and work out the correst solution: 3 + 2m(m + 2) = 5m(m + 2) = 5m² + 10) a) b) c)	The following terms: $3 \times 5x$; $3(5x)$; $5x(3)$ give $15x$. $2a^2 + 14a$ Line 2: $3 + 2m$ is written as $5m$, and in Line 4: the product of $5m$ and 2 is given as 10 instead of 10m. This is what the answer should be: $3 + 2m(m + 2) = 3 + 2m^2 + 4m$ $= 2m^2 + 4m + 3$
 2) This question focuses on the 6 expressions in A. 5k(k - 2) B. (k - 2)5k C. 5 + k(k - 2) D. (k - 2)5 + k E. (k - 2) + 5k F. 5(k - 2)k a) Look at the expressions carefully and any questions: i) In which expressions is k multiplied bracket? ii) In which expressions is 5 multiplied bracket? b) Simplify each expression. c) Which expressions have the same answer does this happen? 	swer these into the into the) a) b)	i) A, B, C and F ii) A, B, D and F A. $5k^2 - 10k$ B. $5k^2 - 10k$ C. $5 + k^2 - 2k$ D. $6k - 10$ E. $6k - 2$ F. $5k^2 - 10k$ A, B and F. In A, monomial $5k$ is multiplied into binomial k - 2 from the left, in B, monomial $5k$ and binomial k - 2 are just switched around. In C, constant 5 of the monomial $5k$ is first multiplied into binomial $k - 2$, and then the product is is multiplied by the variable k of $5k$.
3) Each expression below uses $2a$; a and 3 . We grouped them into 3 clusters. A. $2a(a + 3)$ B. $2a + (a + 3)$ C. $2a - (a + 3)$ D. $(2a - a) + 3$ E. $(2a - a)3$ F. $(2a - 3) + a$ G. $(2a - 3)a$ a) What is different between A, B and C? b) What is different between D and E? c) What is different between F and G? d) What is the same and what is different between C? e) Simplify A to G. f) Try to do E in different way. g) In which expressions are the brackets not	etween E) a) b) c) d) e) f) g)	In A, monomial 2 <i>a</i> is multiplied into binomial $a + 3$ In B, binomial $a + 3$ is added to monomial 2 <i>a</i> In C, binomial $a + 3$ is subtracted from monomial 2 In D, 3 is added to $2a - a$, in E, $2a - 3$ is multiplied by 3 from the right In F, <i>a</i> is added to $2a - 3$, in G, $2a - a$ multiplied by <i>a</i> Same: E and G have binomials multiplied by monomials; 2 <i>a</i> is the first term in the binomial; there is subtraction in both brackets Different: The binomial in E consists of like terms, and they can be added to a single term before multiplying by 3.; the binomial in G has unlike terms. $\boxed{A. 2a^2 + 6a B. 3a + 3 C. a - 3 D. a + 3}{E. 3a \qquad F. 3a - 3 G. 2a^2 - 3a}$ 6a - 3a = 3a or (a)3 = 3a B, D and F
 4) Expand the following expressions: a) 2d(d - e) b) d + 2d(d - e) c) (d - e)2d + e d) 2d(d - e) + e 	4) a) b) c) d)	$2d^{2} - 2de$ $d + 2d^{2} - 2de = 2d^{2} - 2de + d$ $2d^{2} - 2de + d$ $2d^{2} - 2de + d$

In this worksheet you will focus on: adding, subtracting or multiplying algebraic expressions which have 2 terms in brackets, and include negatives

Questions

	Col	lumn A		Col	umn B				
	a)	(<i>a</i> + 2)3		Α.	a(a+2)+3				
	b)	(a+2) - 3		В.	3(<i>a</i> + 2)				
	c)	(a+2)a+3		С.	2(3+a)				
	d)	(3+a)2		D.	3 <i>a</i> + 6				
				Ε.	a + 2 - 3				
I	_ook	at each pair of e	kampl	es an	d do the following	g:			
	S	ay what is the sa	me ab	out e	each expression in	the p	air		
	S	implify each exp	ressio	ı					
	A	re the answers i	n the p	oair t	he same or differe	ent?			
•	S	ay why the answ	ers ar	e the	same or different	:			
		S(m+1)						3(m + 1) + 3	
ł	o) 3	B(-m + 1)				f)	-3	3(m+1) - 3	
(c) 3	S(m + 1)				g)	(<i>n</i>	(n + n) - 2m + n	n
(d) 3	8(-m + 1)				h)	(11	(n+n)(-2m) + n	2
) (Multi	iply out and simp	lify:						
ä	a) 2	2p(p + r)			c) $(p+r)2p$	+ <i>r</i>		e)	(p+2)p - 2p
ł	5) p	p + 2p(p+r)			d) $p - 2p(p)$	+ r)			
	-ind	the value of each	expre	ssin	n if $j = 1$ and $k =$	2			
		(j + k)2j	Слрг	.55101		2.			
	-	2j(j+k)							
	-								
(c) ((j+k)(-2j)							
		(j + k) - 2j							
(e) ((j+k)-kj							
f	F) ((j + k) + j + k							
		(j + k) - j + k							

-	swers			
-	estions		wers	5
1)	There are 4 different expressions in Column A. Find an	1)		
	equivalent expression for each in Column B. There may			
	be more than one match.			
	Column A Column B			
	d) $(a+2)3$ A. $a(a+2)+3$		a)	B and D
	e) $(a+2)-3$ B. $3(a+2)$		b)	E
	f) $(a+2)a+3$ C. $2(3+a)$		c)	A
	e) $(3+a)2$ D. $3a+6$		d)	C
	E, a+2-3			
2)	Question and answers are grouped together for Q2.			
	Look at each pair of examples and do the following:			
	Say what is the same about each expression in the particular sectors of the same about each expression in the same about each e	ir		g) $-3(m+1)+3$
	Simplify each expression			h) $-3(m+1) - 3$
	• Are the answers in the pair the same or different?			• the monomials and binomials are the same
	Say why the answers are the same or different			• $-3m$ and $-3m - 6$
				• The answers are different
	a) $3(m+1)$			• In Q2e, 3 is added to $-3(m + 1)$ but in Q2f, 3
	b) $3(-m+1)$			is subtracted from $-3(m + 1)$.
	 the monomials are the same 			
	• $3m + 3$ and $-3m - 3$			i) $(m+n) - 2m + n$
	The answers are different			j) $(m+n)(-2m) + n$
	• The sign of <i>m</i> in Q2a is positive but in Q2b <i>m</i> is negative.			 the binomials are the same and the last term of each is +n.
	-			• $-m + 2n$ and $-2m^2 - 2mn + n$
	c) $(m + 1)(-3)$			 The answers are different
	 d) (m + 1) - 3 the binomials are the same 			• In Q2g, $(m + n)$ is has $-2m$ added to it but
	• $-3m - 3$ and $m - 2$			in Q2b, $(m + n)$ is multiplied by $(-2m)$.
	 The answers are different 			
	• In Q2c, $(m + 1)$ is multiplied by -3 but in Q2d 3	l ic		
	subtracted from $(m + 1)$.	, 13		
3)	Multiply out and simplify:	3)		
5)	a) $2p(p+r)$	5)	2)	$2p^2 + 2pr$
	b) $p + 2p(p + r)$			$p^{2} + 2p^{2}$ $p + 2p^{2} + 2pr = 2p^{2} + 2pr + p$
	c) $(p+r)2p+r$			$2p^{2} + 2p^{2} + 2pr + p$
	d) $p - 2p(p+r)$			$\frac{2p}{p} - \frac{2p^2}{2p} - \frac{2p}{2p} = -2p^2 - 2pr + p$
	e) $(p+2)p - 2p$			$p^{2} + 2p - 2p = p^{2}$
4)	Find the value of each expression if $j = 1$ and $k = 2$.	4)	,	
Í	a) $(j+k)2j$	Ĺ	a)	((1) + (2))2(1) = 6
	b) $2j(j+k)$		b)	2(1)((1) + (2)) = 6 Same answers. The same binomial
	(i+k)(-2i)		~/	is multiplied by the same monomial just from different
	c) $(j+k)(-2j)$ d) $(j+k) - 2j$			sides.
	e) $(j + k) - kj$		c)	((1) + (2))(-2(1)) = -6
			d)	((1) + (2)) - 2(1) = 1
	f) $(j + k) + j + k$		e)	((1) + (2)) - (2)(1) = 1 Same answers for Q4d and
1	g) $(j+k) - j + k$			Q4e because $k = 2$.
1	Do any clusters (or groups) give the same answers? If so,		f)	((1) + (2)) + (1) + (2) = 6
	why does this happen?		g)	((1) + (2)) - (1) + (2) = 4
L		1		

Worksheet 4.6

In this worksheet you will focus on: adding, subtracting or multiplying algebraic expressions which have 2 terms in brackets, and include negatives

Questions

1)	Look at each pair of expre	essions and do the following:							
	• Say what is the same	e about each expression in the pair							
	• Simplify each express	mplify each expression							
	• Are the answers in th	ne pair the same or different?							
	• Say why the answers	are the same or different							
a)	2(x + 3)	e) $-2(x + 3) - 2$ i) $(-d + e) - 2d(-d)$							
b)	-2(x + 3)	f) $-2(x + 3) + 2$ j) $(-d + e)(-2d) - d$							
-	(x + 3)(-2)	g) $(b+c) - 2b + b$							
d)	(x + 3) - 2	h) $(b+c)(-2b) + b$							
2)	There are 4 different exp	pressions in Column A. Find an equivalent expression for each in Colun	าท B.						
	There may be more than	one match or no match.							
	Column A	Column B							
	a) (<i>d</i> + 1)2	A. $d + 1 - 2$							
	a) $(d+1)2$ b) $(d+1)^2$	A. $d + 1 - 2$ B. $2d + 2$							
	· · · ·								
	b) $(d+1)^2$ c) $(d+1)-2$	B. $2d + 2$ C. $(d+1)(d+1)$							
	b) $(d+1)^2$ c) $(d+1)-2$	B. $2d + 2$ C. $(d+1)(d+1)$ D. $-2(d+1)$							
	b) $(d+1)^2$ c) $(d+1)-2$ d) $(d+1)d+1$	B. $2d + 2$ C. $(d+1)(d+1)$ D. $-2(d+1)$							
3)	b) $(d + 1)^2$ c) $(d + 1) - 2$ d) $(d + 1)d + 1$ Simplify:	B. $2d + 2$ C. $(d+1)(d+1)$ D. $-2(d+1)$							
3)	b) $(d + 1)^2$ c) $(d + 1) - 2$ d) $(d + 1)d + 1$ Simplify: a) $m + 2m(m + y)$	B. $2d + 2$ C. $(d+1)(d+1)$ D. $-2(d+1)$							
3)	b) $(d + 1)^2$ c) $(d + 1) - 2$ d) $(d + 1)d + 1$ Simplify: a) $m + 2m(m + y)$ b) $(m + y)2m + m$	B. $2d + 2$ C. $(d+1)(d+1)$ D. $-2(d+1)$							
3)	b) $(d + 1)^2$ c) $(d + 1) - 2$ d) $(d + 1)d + 1$ Simplify: a) $m + 2m(m + y)$ b) $(m + y)2m + m$ c) $m - 2m(m + y)$	B. $2d + 2$ C. $(d+1)(d+1)$ D. $-2(d+1)$							
3)	b) $(d + 1)^2$ c) $(d + 1) - 2$ d) $(d + 1)d + 1$ Simplify: a) $m + 2m(m + y)$ b) $(m + y)2m + m$ c) $m - 2m(m + y)$ d) $(m + 2)m - 5m$	B. $2d + 2$ C. $(d+1)(d+1)$ D. $-2(d+1)$							
3)	b) $(d + 1)^2$ c) $(d + 1) - 2$ d) $(d + 1)d + 1$ Simplify: a) $m + 2m(m + y)$ b) $(m + y)2m + m$ c) $m - 2m(m + y)$	B. $2d + 2$ C. $(d+1)(d+1)$ D. $-2(d+1)$							

b) (m+y)2m+m

c) m - 2m(m + y)d) (m + 2)m - 5me) (m + 2)(-m) - 5

1)	Question and answers are grouped together for Q1	
a) b) c) d)	 Look at each pair of expressions and do the following: Say what is the same about each expression in the pair Simplify each expression Are the answers in the pair the same or different? Say why the answers are the same or different? Say why the answers are the same or different? Say why the answers are the same or different? Say why the answers are the same or different? Say why the answers are the same or different? Say why the answers are the same or different? Say why the answers are the same or different? Say why the answers are the same or different? Say why the answers are the same or different? The brackets have the same terms 2x + 6 and -2x - 6 The answers are different The signs of the monomials are different . In Q1a we multiply a positive 2 into the bracket but in Q1b we multiply a negative 2 into the bracket. (x + 3)(-2) (x + 3) - 2 The binomial (x + 3) is the same in both. -2x - 6 and x + 1 The answers are different In Q1c, -2 is multiplied by (x + 3). In Q1d, 2 is subtracted from (x + 3) 	answor in both
0	estion	Answers
2)	Column AColumn AColumn A(d + 1)2(b) $(d + 1)^2$ (c) $(d + 1) - 2$ (d) $(d + 1)d + 1$ C. $(d + 1)(d + 1)$ D. $-2(d + 1)$ E. $2(d + 1)$	2) a) B and E b) C c) A d) No match $d^2 + d + 1$
3)	Simplify: a) $m + 2m(m + y)$ b) $(m + y)2m + m$	3) a) $m + 2m^2 + 2my = 2m^2 + 2my + m$

b) $2m^2 + 2my + m$

c) $m - 2m^2 - 2my$ d) $m^2 + 2m - 5m = m^2 - 3m$

e) $-m^2 - 2m - 5m = -m^2 - 7m$

In this worksheet you will focus on: adding, subtracting and multiplying algebraic expressions which have 2 or more terms in brackets and 3 or more terms in the expressions.

Qu	estions
-	There are 6 examples of algebraic expressions in the box below.
,	A. $3-t(t+3)$ D. $(t+1)+t+1$ B. $(t+3)3-t$ E. $(t+2)-2t$ C. $1+t+(t+1)$ F. $(t+2)(-2t)$
	 Look at the examples carefully and answer these questions: a) In which examples must you multiply t into the bracket? b) Simplify each example. c) You should have got the same answer for C and D. Why does this happen? d) Make one change to D so that the answer is 2.
2)	 Look at the 3 examples of algebraic expressions in the box below. Read all the questions (a-d) before you begin. A. 4(2p + 3p) B. 4p(p + 2p + 2) C. 4p(3 + 2p + 1) a) Re-write A, B and C by adding the like terms in the brackets. b) Now simplify your new expressions for A, B and C. c) Now go back to the original expressions for A, B and C in the box. Simplify by applying the distributive law. d) Check that you get the same answers in Q2b and Q2c.
3)	Look at the 8 examples of algebraic expressions in the box. A. $2a + (3 + a)$ E. $a + a + (3 + a)$ B. $2 + a + (3 + a)$ F. $2 + 2(3 + a)$ C. $2 + a(3 + a)$ G. $3 + 2 + (3 + a)$ D. $a + a(3 + a)$ a) In which examples can you simplify terms <u>outside</u> the bracket before you deal with the bracket? b) In which examples are the brackets unnecessary? c) In which examples must you apply the distributive law?
4)	d) Simplify each example. Try to go from the question straight to the answer. Simplify: a) $m-2+m-2$ b) $x+y-2(x+y)$ c) $3r + (4-r)2$ d) $3r + 2 - (4-r)$ e) $(2x + y) - 2x + y$ f) $-2(x + y) - (x + y)$

An	swers			
Que	estions	Ansv	wers	5
1)	There are 6 examples of algebraic expressions in the box below. A. $3 - t(t + 3)$ B. $(t + 3)3 - t$ C. $1 + t + (t + 1)$ D. $(t + 1) + t + 1$ E. $(t + 2) - 2t$ F. $(t + 2)(-2t)$ Look at the examples carefully and answer these questions: a) In which examples must you multiply <i>t</i> into the bracket? b) Simplify each example. c) You should have got the same answer for C and D. Why does this happen? d) Make one change to D so that the answer is 2.	1)	a) b) c) d)	A and F A. $3 - t^2 - 3t$ B. $2t + 9$ C. $2t + 2$ D. $2t + 2$ E. $-t + 2$ F. $-2t^2 - 4t$ Because of the commutative law: a + b = b + a (t + 1) - t + 1
2)	 Look at the 3 examples of algebraic expressions in the box below. Read all the questions (a-d) before you begin. A. 4(2p + 3p) B. 4p(p + 2p + 2) C. 4p(3 + 2p + 1) a) Re-write A, B and C by adding the like terms in the brackets. b) Now simplify your new expressions for A, B and C. c) Now go back to the original expressions for A, B and C in the box. Simplify by applying the distributive law. d) Check that you get the same answers in Q2b and Q2c. 	2)	a) b) c)	A. $4(5p)$ B. $4p(3p + 2)$ C. $4p(2p + 4)$ A) $20p$ B) $12p^2 + 8p$ C) $8p^2 + 16p$ A. $20p$ B. $12p^2 + 8p$ C. $12p + 8p^2$ Yes, they are the same.
3)	 Look at the 8 examples of algebraic expressions in the box. A. 2a + (3 + a) B. 2 + a + (3 + a) C. 2 + a(3 + a) D. a + a(3 + a) E. a + a + (3 + a) F. 2 + 2(3 + a) G. 3 + 2 + (3 + a) a) In which examples can you simplify terms <u>outside</u> the bracket before you deal with the bracket? b) In which examples are the brackets unnecessary? c) In which examples must you apply the distributive law? d) Simplify each example. Try to go from the question straight to the answer. 	3)	a) b) c) d)	F and H B,C, F and H A, D,E and G A. $6a + 2a^2$ B. $3a + 3$ C. $5 + 2a$ D. $2 + 3a + a^2$ E. $4a + a^2$ F. $3a + 3$ G. $8 + 2a$ H. $8 + a$
4)	Simplify: a) $m-2+m-2$ b) $x+y-2(x+y)$ c) $3r + (4-r)2$ d) $3r + 2 - (4-r)$ e) $(2x + y) - 2x + y$ f) $-2(x + y) - (x + y)$	4)	a) b) c) d) e) f)	2m - 4 $-x - y$ $r + 8$ $4r - 2$ $2y$ $-3x - 3y$

In this worksheet you will focus on: adding, subtracting and multiplying algebraic expressions which have 2 or more terms in brackets and 3 or more terms in the expressions.

01	lestions							
1)	There are 6 examples of algebra							
	A. $5 - a(a + 5)$	D. $(a + 3) + a + 3$						
	B. $(a + 5)5 - a$	E. $(a+4) - 4a$						
	C. $3 + a + (a + 3)$	F. $(a+4)(-4a)$						
	Look at the examples carefully a	ind answer these questions:						
	a) In which examples must you	I multiply a into the bracket?						
	b) Simplify each example.							
	c) You should have got the sam	ne answer for C and D. Why does this happen?						
	d) Make one change to D so th	at the answer is 2a.						
2)	Look at the 3 examples of algebr	raic expressions in the box below. Read all the questions (a-d) before						
	you begin.							
	A. $5(p + 3p)$							
	B. $5p(p + 3p + 2)$							
	C. $5p(3 + p + 1)$							
	b) Now simplify your new expr	ng the like terms in the brackets. ressions for A, B and C. expressions for A, B and C in the box. Simplify by applying the						
	distributive law.							
	d) Check that you get the same	e answers in Q2b and Q2c.						
3)	Look at the 8 examples of algebr	raic expressions in the box.						
	A. $2x(4+x)$	E. $x - x(4 + x)$						
	B. $2x + (4 + x)$							
	C. $2 + x + (1 - x)$	G. $1 + (3 + x)^2$						
	D. $2 + x(1 - x)$	H. $1+2-3(1+x)$						
	a) In which examples can you simplify terms <u>outside</u> the bracket before you deal with the bracket?							
	b) In which examples must you							
	c) In which examples are the bd) Simplify each example.	Tackets unnecessaly:						
	a, Simpiny each example.							
4)	Simplify:							
	a) $2b + 3(4 - b) + b$	d) $(x + y) - 2x + x$						
	a) $2b + 3 - (4 - b) + 5b$	e) $-2x(x + y) - 2x - x$						
	c) $2b - 3 + b(4 - b) + 5$	f) $(x + y + 3) - 2x - 3$						

Answers			
Questions	Answers		
 1) There are 6 examples of algebraic expressions in the box below. A. 5 - a(a + 5) B. (a + 5)5 - a C. 3 + a + (a + 3) D. (a + 3) + a + 3 E. (a + 4) - 4a F. (a + 4)(-4a) Look at the examples carefully and answer these questions: a) In which examples must you multiply <i>a</i> into the bracket? b) Simplify each example. c) You should have got the same answer for C and D. Why does this happen? d) Make one change to D so that the answer is 2a. 	1) a) A and F b) A. $5 - a^2 - 5a$ B. $4a + 25$ C. $6 + 2a$ D. $2a + 6$ E. $-3a + 4$ F. $-4a^2 - 16a$ c) Addition is commutative d) $(a + 4) + a - 4 = 2a$		
 2) Look at the 3 examples of algebraic expressions in the box below. Read all the questions (a-d) before you begin. A. 5(p + 3p) B. 5p(p + 3p + 2) C. 5p(3 + p + 1) a) Re-write A, B and C by adding the like terms in the brackets. b) Now simplify your new expressions for A, B and C. c) Now go back to the original expressions for A, B and C in the box. Simplify by applying the distributive law. d) Check that you get the same answers in Q2b and Q2c. 	2) a) A. $5(4p)$ B. $5p(4p+2)$ C. $5p(4+p)$ b) A. $20p$ B. $20p^2 + 10p$ C. $20p + 5p^2$ c) A. $20p$ B. $20p^2 + 10p$ C. $20p + 5p^2$ d) Yes, they are the same		
 3) Look at the 8 examples of algebraic expressions in the box. A. 2x(4 + x) B. 2x + (4 + x) C. 2 + x + (1 - x) D. 2 + x(1 - x) E. x - x(4 + x) F. x - x + (4 + x) G. 1 + (3 + x)2 I. 1 + 2 - 3(1 + x) a) In which examples can you simplify terms <u>outside</u> the bracket before you deal with the bracket? b) In which examples must you apply the distributive law? c) In which examples are the brackets unnecessary? d) Simplify each example. 	c) B,C and F d) A. $8x + 2x^2$ B. $3x + 4$		
4) Simplify: a) $2b + 3(4 - b) + b$ b) $2b + 3 - (4 - b) + 5b$ c) $2b - 3 + b(4 - b) + 5$ d) $(x + y) - 2x + x$ e) $-2x(x + y) - 2x - x$ f) $(x + y + 3) - 2x - 3$	H. $-3x$ 4) a) 12 b) $8b - 1$ c) $-b^2 + 6b + 2$ d) y e) $-2x^2 - 2xy - 3x$ f) $-x + y$		

In this worksheet you will focus on: adding, subtracting and multiplying algebraic expressions which have 2 or more terms in brackets and 3 or more terms in the expressions.

Qu	estions			
1)		ebraic expressions in the box below.		
	A. $(p + 3) - 5 - p$	D. $(p + 3)5 - p$		
	B. $5 - p - (p + 3)$	E. $(p + 3) - 5p$		
	C. $5p(p + 3)$	F. $(p + 3)(-5p)$		
	Look at the examples caref	Ily and answers these questions:		
	a) In which examples mus	you multiply p into the bracket?		
	b) In which examples must you multiply 5 (or -5) into the bracket?			
	c) Simplify each example.			
2)	Look at the 5 examples of algebraic expressions in the box below.			
	A. $2m(6 + 2m + 1)$	D. $2(6 + 2m + gm)$		
	B. $2m(m + 6m + k)$			
	C. $2(k + m + 1)$			
	law? b) Simplify by applying th	distributive law.		
3)	b) Simplify by applying the	distributive law. gebraic expressions in the box.		
3)	 b) Simplify by applying the Look at the 8 examples of a 	gebraic expressions in the box.		
3)	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$		
3)	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2 + t - (4+t)$	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$		
3)	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$		
3)	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2 + t - (4+t)$ D. $2 + t(4+t)$	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$		
3)	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2+t - (4+t)$ D. $2+t(4+t)$ a) In which examples can	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$ H. $10 + 3 - (3 - t)$		
3)	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2 + t - (4+t)$ D. $2 + t(4+t)$ a) In which examples can b) In which examples must	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$ H. $10 + 3 - (3 - t)$ ou simplify terms <u>outside</u> the bracket before you deal with the bracket		
3)	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2 + t - (4+t)$ D. $2 + t(4+t)$ a) In which examples can b) In which examples must c) In which examples are	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$ H. $10 + 3 - (3 - t)$ ou simplify terms <u>outside</u> the bracket before you deal with the bracket you apply the distributive law?		
	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2 + t - (4+t)$ D. $2 + t(4+t)$ a) In which examples can b) In which examples mus c) In which examples are d) Simplify each example.	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$ H. $10 + 3 - (3 - t)$ ou simplify terms <u>outside</u> the bracket before you deal with the bracket? you apply the distributive law? he brackets unnecessary?		
	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2+t - (4+t)$ D. $2+t(4+t)$ a) In which examples can b) In which examples mus c) In which examples are d) Simplify each example.	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$ H. $10 + 3 - (3 - t)$ ou simplify terms <u>outside</u> the bracket before you deal with the bracket? you apply the distributive law? he brackets unnecessary?		
	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2 + t - (4+t)$ D. $2 + t(4+t)$ a) In which examples can b) In which examples mus c) In which examples are d) Simplify each example. Simplify: a) $4n + 3(5 - n) + n$	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$ H. $10 + 3 - (3 - t)$ ou simplify terms <u>outside</u> the bracket before you deal with the bracket? you apply the distributive law? he brackets unnecessary?		
	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2+t - (4+t)$ D. $2+t(4+t)$ a) In which examples can b) In which examples mus c) In which examples are d) Simplify each example.	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$ H. $10 + 3 - (3 - t)$ ou simplify terms <u>outside</u> the bracket before you deal with the bracket? you apply the distributive law? he brackets unnecessary?		
	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2 + t - (4+t)$ D. $2 + t(4+t)$ a) In which examples can b) In which examples must c) In which examples are d) Simplify each example. Simplify: a) $4n + 3(5 - n) + n$ b) $4n + 3 - (5 - n) + n$	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$ H. $10 + 3 - (3 - t)$ ou simplify terms <u>outside</u> the bracket before you deal with the bracket? you apply the distributive law? he brackets unnecessary?		
3) 4)	b) Simplify by applying the Look at the 8 examples of a A. $2t(4+t)$ B. $2t + (4+t)$ C. $2 + t - (4+t)$ D. $2 + t(4+t)$ a) In which examples can b) In which examples mus c) In which examples are d) Simplify each example. Simplify: a) $4n + 3(5 - n) + n$ b) $4n + 3 - (5 - n) + n$ c) $4n - 3 + n(5 - n) + 5$	gebraic expressions in the box. E. $t - t(4 + t)$ F. $t + t + (3 - t)$ G. $2 + 2(3 + t)$ H. $10 + 3 - (3 - t)$ ou simplify terms <u>outside</u> the bracket before you deal with the bracket? you apply the distributive law? he brackets unnecessary? Try to go from the question straight to the answer.		

Answers			
Questions	Answers		
 1) There are 6 examples of algebraic expressions in the box below. A. (p + 3) - 5 - p B. 5 - p - (p + 3) C. 5p(p + 3) D. (p + 3)5 - p E. (p + 3) - 5p F. (p + 3)(-5p) Look at the examples carefully and answers these questions: a) In which examples must you multiply p into the bracket? b) In which examples must you multiply 5 (or -5) into the bracket? c) Simplify each example. 	1) a) C and F b) C, D and F c) A. -2 B. $2 - 2p$ C. $5p^2 + 15p$ D. $4p + 15$ E. $-4p + 3$ F. $-5p^2 - 15p$		
 c) Simplify each example. 2) Look at the 5 examples of algebraic expressions in the box below. A. 2m(6 + 2m + 1) B. 2m(m + 6m + k) C. 2(k + m + 1) D. 2(6 + 2m - 6m) E. 2m(6 + 2m + k) a) In which examples can you simplify terms inside the bracket before you apply the distributive law? b) Simplify by applying the distributive law. 	2) a) A, B and D b) A. $14m + 4m^2$ B. $14m^2 + 2mk$ C. $2k + 2m + 2$ D. $12 - 8m$ E. $12m + 4m^2 + 2mk$ $= 4m^2 + 2mk + 12m$		
 3) Look at the 8 examples of algebraic expressions in the box. A. 2t(4+t) B. 2t + (4 + t) C. 2 + t - (4 + t) D. 2 + t(4 + t) E. t - t(4 + t) F. t + t + (3 - t) G. 2 + 2(3 + t) H. 10 + 3 - (3 - t) a) In which examples can you simplify terms <u>outside</u> the bracket before you deal with the bracket? b) In which examples must you apply the distributive law? c) In which examples are the brackets unnecessary? d) Simplify each example. Try to go from the question straight to the answer. 	3) a) F and H b) A, D, E and G c) B and F d) A) $8t + 2t^2$ B) $3t + 4$ C) -2 D) $2 + 4t + t^2$ E) $-3t - t^2$ F) $t + 3$ G) $8 + 2t$ H) $10 + t$		
4) Simplify: a) $4n + 3(5 - n) + n$ b) $4n + 3 - (5 - n) + n$ c) $4n - 3 + n(5 - n) + 5$ d) $(c + d) - 4c + c$ e) $(c + d + 3) - 4c - 3c(c + d + 3) - 3$ f) $-4c(c + d) - 4c - (c + d)(-4c) - c - 2$	4) a) $15 + 2n$ b) $4n - 2$ c) $-n^2 + 9n + 8$ d) $-2c + d$ e) $-12c + d - 3c^2 - 3cd$ $= -3c^2 - 3cd - 12c + d$ f) $-5c - 2$		

In this worksheet you will focus on: adding, subtracting and multiplying algebraic expressions which have 2 or more terms in brackets and 3 or more terms in the expressions.

Questions 1) There are 6 examples of algebraic expressions in the box below. A. 4 - j - (j + 2)D. (j + 2)4 - jB. (j + 2) - 4 - jE. (j + 2) - 4jC. 4 - j(j + 2)F. (j + 2)(-4j)Look at the examples carefully and answers these questions: a) In which examples must you multiply *j* into the bracket? b) In which examples must you multiply 4 (or -4) into the bracket? c) Simplify each example. 2) Look at the 5 examples of algebraic expressions in the box below. A. 2g(g + 2g + h) D. 2(h + 3g + 3)B. 2g(4 + 2g + 3) E. 2g(4 + 3g + h)C. 2(4 + 2g + 3g)a) In which examples can you simplify terms inside the bracket before you apply the distributive law? b) Simplify by applying the distributive law. 3) Look at the 8 examples of algebraic expressions in the box: A. 3t(4+t) + 5E. -t - t(4 + t)B. 3t + (4+t) - 5F. t+t+(2-t)+5C. 3+t-(4+t)G. -3+3(2+t)+tD. -3 + t(4 + t) - t H. 10 + 2 - (2 - t)a) In which examples can you simplify terms outside the bracket before you deal with the bracket? b) In which examples must you apply the distributive law? c) In which examples are the brackets unnecessary? d) Simplify each example. Try to go from the question straight to the answer. 4) Simplify: a) 2u + 3(4 - u) + ub) 2u + 3 - (4 - u) + 5uc) 2u - 3 + u(4 - u) + 5d) (a + b) - 2a + ae) (a + b + 3) - 2a - 3a(a + b + 3) - 3f) -2a(a + b) - 2a - (a + b)(-2a) - a - 2

Answers			
Questions	Answers		
1) There are 6 examples of algebraic expressions in the box below: A. $4 - j - (j + 2)$ B. $(j + 2) - 4 - j$ C. $4 - j(j + 2)$ D. $(j + 2)4 - j$ E. $(j + 2) - 4j$ F. $(j + 2)(-4j)$ Look at the examples carefully and answers these questions: d) In which examples must you multiply <i>j</i> into the bracket? e) In which examples must you multiply 4 (or -4) into the bracket? f) Simplify each example.	1) a) C and F b) D and F c) A. $-2j + 2$ B. -2 C. $4 - j^2 - 2j = -j^2 - 2j + 4$ D. $3j + 8$ E. $-3j + 2$ F. $-4j^2 - 8j$		
 2) Look at the 5 examples of algebraic expressions in the box below: A. 2g(g + 2g + h) B. 2g(4 + 2g + 3) C. 2(4 + 2g + 3g) D. 2(h + 3g + 3) E. 2g(4 + 3g + h) a) In which examples can you simplify terms <u>inside</u> the bracket before you apply the distributive law? b) Simplify by applying the distributive law. 	2) a) A, B and C b) A. $6g^2 + 2gh$ B. $14g + 4g^2$ C. $8 + 10g$ D. $2h + 6g + 6$ = 6g + 2h + 6 E. $8g + 6g^2 + 2gh$ $= 6g^2 + 2gh + 8g$		
 3) Look at the 8 examples of algebraic expressions in the box: A. 3t(4+t)+5 B. 3t + (4+t) - 5 C. 3+t - (4+t) D3+t(4+t) - t Et-t(4+t) F. t+t+(2-t)+5 G3+3(2+t)+t H. 10+2-(2-t) a) In which examples can you simplify terms <u>outside</u> the bracket before you deal with the bracket? b) In which examples must you apply the distributive law? c) In which examples are the brackets unnecessary? d) Simplify each example. Try to go from the question straight to the answer. 	3) a) F and H b) A, D, E and G c) B and F d) A. $12t + 3t^2 + 5 = 3t^2 + 12t + 5$ B. $4t - 1$ C. -1 D. $-3 + 3t + t^2$ E. $-5t - t^2$ F. $t + 7$ G. $3 + 4t$ H. $10 + t$		
4) Simplify: a) $2u + 3(4 - u) + u$ b) $2u + 3 - (4 - u) + 5u$ c) $2u - 3 + u(4 - u) + 5$ d) $(a + b) - 2a + a$ e) $(a + b + 3) - 2a - 3a(a + b + 3) - 3$ f) $-2a(a + b) - 2a - (a + b)(-2a) - a - 2$	4) a) 12 b) $8u - 1$ c) $-u^2 + 6u + 2$ d) b e) $-3a^2 - 3ab - 10a + b$ f) $-3a - 2$		