Internal Policies and Procedures of the Utah State Board of Education

Policy # 05-14

Subject: Software Development Secure Practices Policy
Date Approved February 21, 2024

Policy Owner’s Title Chief Information Security Officer

Policy Officer’s Title Deputy Superintendent of Operations
References:

NIST Special Publication 800-218

USBE Data Governance Plan

OWASP Developer Guide

SAFECode Fundamental Practices for Secure Software Development, Third Edition

-Center for Internet Security (CIS) Critical Security Controls — Control 16

1) Purpose and Scope

a) This policy sets forth a minimum set of requirements for all software/application development
within the Utah State Board of Education (USBE).

i)

This policy applies to all application developed fully or partially by USBE developers,
applications modified by USBE Developers, and Commercial off-the-shelf (COTS) application.

2) Policy.

a) A Secure Application Development Process must be established and maintained.

b)

c)
d)

e)

i)

i)

This process should address items such as: secure application design standards, secure
coding practices, developer training, vulnerability management, security of third-party code,
and application security testing procedures.

Documentation should be reviewed and updated annually, or when significant enterprise
changes occur that could impact this Process.

A process must be established and maintained for accepting and addressing Software
Vulnerabilities.

i)

ii)

iii)

The process should include: a vulnerability handling policy that identifies reporting process;
responsible party for handling vulnerability reports; and a process for intake, assignment,
remediation, and remediation testing.

As part of the process, a vulnerability tracking system that includes severity ratings, and
metrics for measuring timing for identification, analysis, and remediation of vulnerabilities
should be used.

Documentation should be reviewed and updated annually, or when significant enterprise
changes occur that could impact this Process.

Root Cause Analysis should be performed on Security Vulnerabilities
An inventory of third-party components used in development must be established and updated
monthly.

i)

i)

This inventory is to include any risks that each third-party component could pose.

Third-party software components must be up to date and from trusted sources.

When possible, choose established and proven frameworks and libraries that provide
adequate security.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://www.schools.utah.gov/file/c238a77b-bc61-4a17-a9da-a5c6b756e233
https://owasp.org/www-project-developer-guide/
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf

f)

h)

j)

k)

n)

ii) Components should be acquired from trusted sources or the software should be evaluated
for vulnerabilities before use.
A severity rating system and process for application vulnerabilities should be established that
facilitates prioritizing the order in which discovered vulnerabilities are fixed.
i) This process includes setting a minimum level of security acceptability for releasing code or
applications.
ii) This system and process should be reviewed and updated annually.
Use standard, industry-recommended hardening configuration templates for application
infrastructure components.
i) This includes underlying servers, databases, and web servers, and applies to cloud
containers, Platform as a Service (PaaS) components, and SaaS components.
ii) In-house developed software must not weaken configuration hardening of the USBE
network.
Separate environments for production and non-production systems must be maintained.
Software development personnel should receive training in secure code writing for their specific
development environments and responsibilities.
i) Training can include general security principles and application security standard practices.
ii) Training should be conducted at least annually and designed in a way to promote security
within the development team and build a culture of security among the developers.
Secure design principles should be applied to application architectures.
i) Secure Design Principles Include:
(1) The concept of least privilege and enforcing mediation to validate every operation that
the user makes.
(2) Promoting the concept of "never trust user input".
(3) Minimizing the application infrastructure attack surface.
(a) Includes but not limited to turning off unprotected ports and services, removing
unnecessary programs and files, and renaming or removing default accounts.
Vetted modules or services for application security components should be leveraged to reduce
developers’ workload and minimize the likelihood of design or implementation errors.
i) Examples include: identity management, encryption, auditing and logging, and mechanisms
to create and maintain secure audit logs.
Static and dynamic analysis tools should be applied within the application life cycle to verify that
secure coding practices are being followed.
All Storage and transmission of sensitive data like personally identifiable information (PIl) must
follow all USBE privacy rules and policies.
i) Each Program Manager should maintain a list of the systems they manage and their
approval status for sensitive data interactions.
Application development leadership are required to create additional application development
policies, procedures, and best practices be developed following this policy, National Institute of
Standards and Technology (NIST) Special Publication 800-218, and other industry best practices
such as Open Worldwide Application Security Project (OWASP), SAFECode, etc.

i) These should be created with input from other stakeholders such as the Chief Information
Security Officer, the Data Privacy Office, and Information Technology (IT) Operations.

3) Change History

Date Version Author Changes Made / Section(s)
April 11, 2023 0.1.0 Patrick Hawkins Initial Draft

December 8, 2023 0.1.1 Patrick Hawkins Draft review and update

